This study synthesized pure anatase carbon doped TiO2 photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/TiCl4. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported TiO2 nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the TiO2 layer, and the XPS data suggested the substitution of titanium in TiO2 by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported TiO2 nanocrystals prepared by pyrolysis at 300, 350, and 400ºC for 3 h on a stainless steel mesh were actual supported carbon doped TiO2 nanocrystals. Thus, PAN/DMF/TiCl4 offers a facile, robust sol-gel related route for preparing supported carbon doped TiO2 nanocomposites.
As the results of study, the difference of marshall stability is insignificant according to steel mesh reinforcement. But property of dynamic stability of steel mesh reinforced asphalt concrete is improved 2.6 times compared to the Plain.
신축공사의 비용에 대한 부담과 건설된 지 오래되어 노후화가 진행된 철근콘크리트 구조물의 증가로 유지관리의 필요성이 크게 증가하여 점차적으로 보수⋅보강 분야가 확대되고 있다. 이러한 필요성의 증가로 인해 새로운 보수⋅보강 기술이 국내⋅외에서 지속적으로 연구되고 있다. 국내에서는 철근콘크리트 구조물의 보수⋅보강공법으로 강판접착공법, 섬유보강 (Fiber reinforced plastic, 이하 FRP) 표면부착공법, 외부 프리스트레싱공법 등이 사용되고 있다. 이러한 방법 외 Steel mesh로 보강한 시멘트 모르타르 (Steel Mesh Cement Mortar;SMCM)을 이용한 보수방법을 고려하고자, Steel mesh 의 보강 면적, 그리고 보강 층 수 (number of layer)를 달리하여, 3점 휨 부재 실험을 수행하였다. 1400×500×200 (mm)의 기본 철근 콘크리트 (RC)를 포함하여 총 5종류의 시편을 제작하였으며, 처짐량을 측정하기 위해, 시편 상부에LVDT를 설치하였으며, 시편 중앙부에 철근 변형률 게이지와 콘크리트 변형률 게이지, 전단 철근에 철근 변형률 게이지를 부착하였다. 3점 휨 실험 결과, 모든 하중-변위 곡선에서 공통적으로 SMCM으로 보강한 시편이 기본 RC에 비해 최대하중이 더 높은 것을 확인할수 있었다. SMCM을 두 층, 그리고 기본 RC 하부 전체에 보강을 할 경우, 기본 RC에 비해 최대 하중은 1.18배, 처짐은 최대 1.37배 더높은 것을 확인할 수 있었다. 시편의 종류마다 조금씩 다른 양상을 보였는데, 이는 SMCM과 RC의 부착 정도의 차이로 인해 결과의 차이가 발생한 것으로 보인다.특히, 지점부 안쪽으로 부분 보강하고, Steel Mesh를 한 겹으로 보강한 네 번째 경우 (SM-B1)에는, SMCM이 실험 도중 박락되는 현상이 발생하였다. SMCM을 보수⋅보강 재료로서 활용하기 위해선 RC와의 부착 성능 향상이 필요하다고 판단된다.
최근, 프리캐스트를 통한 모듈화에 대한 관심으로 인해 교량 및 빌딩 뿐만 아니라, 원전구조물, LNG 가스탱크, 중소형 강합성 구조물 등 특수구조물에도 프리캐스트 모듈화에 대한 연구가 활발하게 이뤄지고 있다. 본 연구에서는 프리캐스트 제작의 시공 및 작업성, 원활한 자재의 조달할 수 있는 방법으로 페로시멘트 (ferrocement)를 바탕으로 한 스틸메쉬로 보강된 모르타르 프리캐스트 패널을 제작하였다. 모르타르는 고강도 및 고유동성을 지니도록 실리카퓸과 고로슬래그의 배합율에 대한 변수연구를 통해 최적의 배합을 선정하였으며, 1,200×600×150mm의 패널을 제작하여 스틸메쉬로 보강한 모르타르 시편과 일반 철근콘크리트 시편을 보강비 2%와 4%로 각각 제작하였다. 제작된 스틸메쉬로 보강한 모르타르의 프리캐스트 모듈화의 적용 가능성을 판단하기 위하여 기본적인 재료물성실험과 자유건조수축실험을 수행하였으며, 선하중으로 하중을 재하하여 3점 휨 시험으로 스틸메쉬로 보강한 모르타르의 구조성능을 검토하였다. 실험결과를 통해, 스틸메쉬로 보강된 모르타르 프리캐스트 패널은 높은 휨성능 및 연성효과가 있으나, 4%로 보강된 스틸메쉬 모르타르 프리캐스트 패널은 전단보강에 대한 고려가 필요하다고 판단되며, 이에 대한 조치가 이루어진다면 프리캐스트 모듈화 부재로 적용이 가능하다고 판단된다.