Using closed-section ribs as longitudinal stiffeners have been proven to be an effective system for axially compressed members, however, studies on the application of these on laminated composite shell are insufficient. Thus, this study aims to evaluate the buckling behavior of the laminated composite shell when closed-section ribs were applied as longitudinal stiffeners. The effect of the rotational stiffness of the closed-section ribs on the buckling modes and strengths will be determined in this paper. The three-dimensional finite element modeling were set up using ABAQUS and a series of eigenvalue analysis were conducted, applying eight layers of the layup [(0°)4]s, [(45°/-45°)2]s and [(0°/90°)2]s on the orthotropic plates. Through the parametric studies, the increasing effect on the elastic buckling strengths due to the rotational stiffness are numerically verified, and the buckling strength of a longitudinally stiffened shell with a laminated composite material were compared with that of the isotropic material.
This study is about the basic design technology to radically increase the structural stability of structural shell or tube, which are utilized in a variety of large structures like aircrafts, plant, bridges and buildings. Recent studies have revealed that the plates stiffened by closed-sections ribs can be designed to have greater strength as well as the reduction of used number of stiffeners. Then, the analytical models were selected based on the huge steel tube design and the finite element modeling has been conducted using the ABAQUS. Through this study, the elastic buckling strengths are compared with the flat plate buckling stress and the improved effect in the local buckling strength due to the closed-section ribs are numerically verified.
보강된 판 및 쉘구조의 동적 비선형해석을 수행하기 위하여, 유한회전을 고려한 변형된 쉘유한요소를 이용하여 total Lagrangian formulation이 제시된다. 전단구속 (shear locking) 현상과 가상의 제로에너지 모우드를 동시에 제거하기 위하여 가정변형도 개념을 채용한다. 탄소성해석에서는 return mapping 미해rithm이 쉘구조의 붕괴 해석에 적용된다. Newmark 직접적분법을 사용하여 동하중 및 지진하중을 받는 쉘구조의 동적 비선형해석 결과를 제시한다.
보강된 판 및 쉘구조의 기하학적 비선형해석을 수행하기 위하여, total lagrangian formulation에 근거한 증분 평형방정식을 적용하고, 강도행렬 산정시 회전각의 2차항을 포함시켜 기하학적 비선형 해석시 해의 수렴성을 향상시켰으며, 보강된 쉘 구조의 해석시 보강재를 쉘 요소로 모델링하고 주부재와 보강재의 연결점에서 일반적인 변환관계를 이용하였다. 등매개 쉘 유한요소의 단점인 locking 현상을 극복하기 위하여 가정 변형률장을 적용하여 감차적분 또는 선택적분시 나타날 수 있는 제로 에너지 모드를 제거하였다. 수치해석 예제를 통하여 가정 변형률장에 근거한 쉘유한요소에 대한 효율성 및 적용성을 확인하였다.
최 등1)은 total lagrangian formulation에 근거한 증분 평형방정식을 적용하고, 강도행렬 산정시 회전각의 2차항을 포함시켜 기하학적 비선형 해석시 해의 수렴성을 향상시켰다. 또한 등매개 쉘 유한요소의 단점인 전단구속 현상과 제로 에너지 모드가 발생하는 문제를 극복하기 위하여 가정 변형률장을 적용하여 보강된 판 및 쉘 구조의 비선형 해석법을 개발하였다. 본 연구에서는 잔류응력을 고려한 쉘구조의 극한강도 해석을 수행하기 위하여, 대변형거동과 함께 소성붕괴거동을 추적할 수 있는 알고리즘을 제시한다. 잔류응력을 고려한 증분평형방정식에 return mapping algorithm을 이용한 탄소성 해석법을 결합시켜서 보강된 판 및 쉘구조의 극한거동을 파악한다. 수치해석 예제를 통하여 본 연구에서 제시된 유한요소 및 비선형 해석 알고리즘에 대한 효율성 및 적용성을 확인하였다.
보강된 판 및 쉘구조의 안정성 및 후좌굴을 포함하는 기하학적 비선형 해석을 수행하기 위하여, total Lagrangian formulation에 근거한 연속체의 증분평형방정식으로부터 변형된 쉘요소인 유한요소이론을 제시하였다. 쉘구조의 곡률이 불연속적으로 변하거나 쉘부재들이 유한한 각도로 만나는 보강된 판 및 쉘구조의 비선형 해석이 가능하도록 주부재와 보강재 간의 연결점에 대한 일반적인 변환관계를 제시하였으며 좌굴해석 및 기하학적 비선형해석의 경우에 해의 정확성 및 수렴성을 개선시키기 위하여 접선강도행렬 산정시 회전각의 2차항을 포함시켰다. 또한, shear locking 현상을 극복하기 위하여 감차적분을 적용하였고 쉘구조의 좌굴해석에서는 power method를 적용하여 해석의 효율을 높였으며, 후좌굴해석에서는 변위 및 하중증분법을 적절히 결합시켜 보강된 쉘구조의 후좌굴 거동추적이 용이하였다. 또한, 입력자료를 손쉽게 준비하고 좌굴모드 및 후좌굴거동을 효율적으로 분석하기 위하여 전, 후 처리 프로그램을 개발하였고 다양한 해석예제를 통하여 다른 문헌의 해석결과를 비교함으로써 본 연구에서 개발된 유한요소 해석프로그램의 타당성 및 정확성을 입증하였다.
The thin cylindrical shell structure under compression should be checked with buckling stability. In DNV, there is a spacing criteria of stiffener which based on linear theory without initial imperfection. In this study, structural analysis, using geometry nonlinear analysis, of stiffened cylindrical buckling strength with various initial imperfection were performed and compared with DNV and FEM results.
The ultimate flexural behavior of composite shell structure stiffened by steel pipe is investigated experimentally in this paper. Total 4 kinds of experimental specimens are constructed according to the size of steel pipe and diameter of GFRP septic tank. The load-displacement curves of the test are provided. xial and hoop stress of GFRP septic tank and flexural stress of steel pipe are obtained. The experiment results are useful for the verification of three-dimensional numerical analysis.