To improve the iron content of red pepper, we have transferred the entire coding sequence of the ferritin gene(Fpl) into Capsicum annuum (L. cv. Chungyang and Bukang) by Agrobacterium mediated transformation. Transformants were found to contain the Fp1 gene at up to three loci, increased distinct iron content changes. In transgenic plants, iron content was as much as 7-fold to 8-folds greater than that of their untransformed counterparts. Furthermore, the Rl progenies from transformant(A7, A8) co-segregated into a 15:1 ratio for both Kanamycin resistance and genotype of high iron.
A cDNA Fragment encoding iron storage protrin generated by polymerase chain reaction(PCR) using highly conserved regions of ferritin related genes were used to sereen a red pepper cDNA library. cDNA clone was designated as Fp1. Fp1 clone contatines a 5' nontranslated region of 51dp containing stop conds. Down stream from 5' UTP. an open reading frame of 750bp was observed. followed by a 3' UTR of 272bp. The deduces amino acid sequence of red pepper protein(Fp1) showed 84%, 48% and 36% identity with soybean(SolC). human(HuL H) and horse spleen(HoS-L) ferritin mRNA accumulation in response to iron. Ferritin mRNA accumulation was transient and particularly abundant in leaves. reaching a maxmum at 12h. The level of ferritin mRNA in roots was affected to a lesser extent than in leaves.