검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study presents the results of compression, drop impact, and vibration durability analyses conducted to evaluate the mechanical reliability of Battery Pack Cases (BPCs) in electric vehicle (EV) systems. BPCs are essential structural components that must endure compressive loads, impact forces, and vibrational fatigue. Finite Element Analysis (FEA) was applied to a representative BPC model to assess deformation, impact resistance, and vibration endurance. The results indicate that the BPC maintained integrity within yield strength limits under compressive loading and effectively absorbed energy under drop impact. Furthermore, Power Spectral Density (PSD) analysis identified stress concentration regions, providing insights for structural optimization. Overall, the findings support the development of lightweight and reliable BPC designs for advanced EV applications.
        4,500원
        2.
        2016.06 KCI 등재 서비스 종료(열람 제한)
        For elevated railway station on which track is connected with superstructure of station, structural vibration level and structure-borne-noise level has exceeded the reference level due to structural characteristics which transmits vibration directly. Therefore, existing elevated railway station is in need of economical and effective vibration reduction method which enable train service without interruption. In this study, structural vibration non-transmissible system which is applied to vibroisolating material for column member is developed to reduce vibration. That system is cut covering material of the column section using water-jet method and is installed with vibroisolating material on cut section. To verify vibration reduction effect and structural performance for structural vibration non-transmissible system, impact hammer test and cyclic lateral load test are performed for 1/4 scale test specimens. It is observed that natural period which means vibration response characteristics is shifted , and damping ratio is increased about 15~30% which means that system is effective to reduce structural vibration through vibration test. Also load-displacement relation and stiffness change rate of the columns are examined, and it is shown that ductility and energy dissipation capacity is increased. From test results, it is found that vibration non-transmissible system which is applied to column member enable to maintains structural function.