In this study, static and dynamic analyses were conducted on three atypical building models to evaluate the displacement response reduction performance based on the outrigger system installation location in a atypical building that incorporated both tapered and twisted shapes. Three 60-story models were developed with a fixed 3-degree taper and twist angles of 1, 2, and 3 degrees per story. Outrigger systems were installed at 10-story intervals and additionally between the 20th and 40th floor at 1-story intervals. The results indicated that, although there were variations depending on the seismic loads, the displacement response reduction performance was generally most effective when the outriggers were installed in the upper stories (41st to 60th floors) of the analytical models.
With technological and social development, high-rise atypical buildings have emerged. In order to take into account the structural vulnerability due to their high-rise atypical shape, systems such as vibration control system and seismic isolation can be applied. In this study, dynamic behavior characteristics analysis was conducted based on the location of the seismic isolation system installation of the atypical facade shape Tapered and reverse shell structure models. With the installation of Lead Rubber Bearing(LRB), the maximum story drift ratio showed a decrease, but the maximum absolute acceleration showed a phenomenon in which the response was amplified in the middle and low story. LRB1(base isolation system) is the most effective for simultaneous control of the two dynamic responses, but the 46th floor of ‘Nor’ and’ RS’ and the 41st floor of ‘TA’ are considered the most effective installation location of the seismic isolation system in consideration of the burden of the seismic isolation system and the structure stability.