Light weighting is one of techniques considered importantly at designing the mechanical structure using the light weight material. This study deals with aluminum-6061 and aluminum foam which stood in the spotlight of light weight material. And the finite element method for safety evaluation has been carried out in order to prevent from the damage and fatigue fracture due to crack appearing at the mechanical structure with this material. The simulation analysis as MT(middle tension) test was carried out by using the core of aluminum foam and the material laminated with sandwich structure of Al-6061. The mechanical structure is linked together with various parts and designed as the material with hole or crack. So, MT test is one of the test methods to evaluate the fatigue fracture characteristic of material and the strength inside material with the center crack by applying the load to the part connected pin. The real material strength is thought to be evaluated through the study result of MT test analysis.
Tension members is a type of effective structural member, which is often used in large span structures. The structure systems composed with tension members are combined in various way and specific formations. So, there are need to research into the formations of tension structure and the type of adaptation in tension structure architectures. The structure systems with tension members were considered as tension main system, vector system and tension supported bending system, comprehensively. And tension structures were classified into the formation of tension structure with uniaxial or multiaxial line tension member, with surface member, with hybrid member of line and surface, concerning the flow of tension force. In each the formation of tension structure, the typical adaptations to architecture were also investigated through architecture examples. The type of the formation can be used to plan an architecture with respect to the flow of tension force and structural feature.