검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2022.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Alzheimer's disease (AD) is one of the most common forms of dementia, affecting more than 50 million people globally. The onset of AD is linked to age, smoking, obesity, hypercholesterolemia, physical inactivity, depression, gender, and genetics of an individual. The accumulation of Aβ peptides and neurofibrillary tangles (NFTs) in the brain is one of the critical factors that lead to AD, which is known to disrupt neuronal signaling and causing neurodegeneration. As per the current understanding, inhibiting the accumulation of Aβ peptides and NFTs is crucial in the management/treatment of AD. Latest research studies show that nanoparticles have the potency of improving drug transport across the blood–brain barrier easily. Specifically, graphene quantum dots (GQDs), a type of semiconducting nanoparticles, have been established as effective inhibitors for blocking the aggregation of Aβ peptides. The small size of GQDs allows them to pass through the blood– brain barrier with ease. Moreover, GQDs have fluorescence properties, which can be used to detect the concentration of Aβ in vivo. In recent years, compared to other carbon materials, the low cytotoxicity and high biocompatibility of GQDs, give them an advantage in the suitability and clinical research for AD. In this manuscript, we have discussed the role of different types of nanoparticles in the transportation of encapsulated or co-assembled compound drugs for the treatment of AD and importantly, the role of GQDs in the diagnosis and management/treatment of AD.
        4,600원
        2.
        2018.09 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Earthworms have been employed in traditional oriental medicine for the treatment of neurological disorders, as anticonvulsants, analgesics, and sedatives. In fact, earthworms are currently used as a medicinal agent in China, South Korea, Japan, Taiwan and North Korea. However, both the species and the genus of the earthworms registered in the pharmacopoeia of each country are different. Neural injury is induced by oxidative stress, inflammation, and apoptosis. The role of various synthetic chemicals of earthworms as antioxidant and anti-inflammatory agents have been studied and earthworm extract and its components have been shown to protect nerve cells and restore nerve function in various preclinical neuronal damage models. We employed earthworm extracts to provide prevention and treatment strategies for many neurodegenerative disorders including Parkinson's disease, mild cognitive impairment, cerebral infarction, and peripheral nerve damage. In this study, we investigated the effects of earthworm extracts and its components to explore their prophylactic and therapeutic effects in various neuropathic models. We used earthworm resources to provide prevention and treatment strategies for many neurodegenerative disorders including Parkinson's disease, mild cognitive impairment, cerebral infarction, and peripheral nerve damage. We summarized the protective effects of both earthworms and their extracts on neuropathies. The current study identified some earthworm components to be used in treatment and prevention strategies for nerve disorders and could be helpful for the development of new therapies for intractable diseases.
        4,000원
        3.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass cells of blastocyst with the potential to maintain an undifferentiated state indefinitely. Fully characterized ES cell lines express typical stem cell markers, possess high levels of telomerase activity, show normal karyotype and have the potential to differentiate into numerous cell types under in vitro and in vivo conditions. Therefore, ES cells are potentially valuable for the development of cell transplantation therapies for the treatment of various diseases in animals as well as in humans. However, important problems associated with ES cells from in vitro fertilized blastocysts particularly from humans must be resolved before taking up its therapeutic applications. Current techniques for directed differentiation into somatic cell populations remain inefficient and yield heterogeneous cell populations. This review therefore focuses on ES cells with respect to in vitro propagation and differentiation in basic cell and developmental biology for successful use of these cells in therapeutics.
        4,000원
        6.
        2017.06 KCI 등재 서비스 종료(열람 제한)
        Background: Traditional plant drugs, are less toxic and free from side effects compared to general synthetic drugs. They have been used for the treatment of diabetes and associated renal damage. In this study, we evaluated effect of Hachimi-jio-gan against diabetic renal damage in a rat model of type 1 diabetic nephropathy induced by subtotal nephrectomy plus streptozotocin (STZ) injection, and in Otsuka Long-Evans Tokushima Fatty (OLETF) rats and db/db mice as a model of human type 2 diabetes, and its associated complications. To explore the active components of Hachimi-jio-gan, the antidiabetic effect of corni fructus, a consituent of Hachimi-jio-gan, and 7-O-galloyl-D-sedoheptulose, a phenolic compound isolated from corni fructus, were investigated. Methods and Results: We conducted an extensive literature search, and all required data were collected and systematically organized. The findings were reviewed and categorized based on relevance to the topic. A summary of all the therapeutic effects were reported as figures and tables. Conclusions: Hachimi-jio-gan serves as a potential therapeutic agent to against the development of type 1 and type 2 diabetic nephropathy. From the results of characterization active components of corni fructus, 7-O-galloyl-D-sedoheptulose is considered to play an important role in preventing and/or delaying the onset of diabetic renal damage. 7-O-Galloyl-D-sedoheptulose is expected to serve as a novel therapeutic agent against the development of diabetic nephropathy.