The Auxiliary Building Controlled Area Emergency Exhaust Air Cleaning Units (ACU) should be taken into account in the accident analysis that the entire gaseous radioactive material is exhausted to the environment through the auxiliary building without any filtration until the pressure reaches a negative pressure, approximately -0.25 inch, water gauge, when the ACU operation is credited in the analysis. Thus, this paper performed thermal-hydraulic analysis using GOTHIC program and showed the exhaust flow from each room in the auxiliary building controlled area to maintain room pressure not greater than (-) 0.25 inch water gauge.
Experimental analysis has been carried out to investigate thermal characteristics of hydraulic system in special vehicles. Hydraulic system performance is largely influenced by oil temperature, and there are considerable performance decline and malfunctions in the system for high temperature conditions caused by heavy load and continuous operation. Transient oil temperature and pressure variation are analyzed and heat generation rates in the several main system parts are compared for various flow rates. With the start of system operation oil temperature gradually increases, and viscosity deceases by about 70% as temperature increases from 20℃ to 80℃. Operation pressure in the hydraulic system decreases with oil temperature, and its variation rate becomes less steep as oil temperature increases. Heat generation rate in hydraulic pump also depends on the oil temperature, and it reaches maximum near 50℃. These results in this study can be applied to optimal design of efficient hydraulic system in special vehicles.