검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 54

        1.
        2025.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Composites of carbon fiber-reinforced silicon carbide (Cf/SiC) with ultra-high temperature ceramics (UHTCs) exhibit superior resistance to oxidation and ablation under high temperatures. Components in large-scale applications often have complex geometries, making it crucial to understand the oxidation and ablation behaviors of curved and non-uniform surfaces. In this study, a Cf/SiC-ZrB2 composite was fabricated into a 300 mm cylindrical shape using filament winding and liquid silicon infiltration processes. The resulting specimens exhibited a uniform microstructure, with SiC and ZrB2 crystals evenly distributed across the top and bottom surfaces, demonstrating the feasibility of producing large-scale composites. The specimens underwent an oxyacetylene torch test at 2,100 K for 5 min to assess their ablation and oxidation performance. The results revealed significant variation in the oxide layer due to the non-flat surface, with the layer thickness gradually decreasing as the oblique angle was reduced. Additionally, the presence of high-melting-point ZrO2 in the oxide layer near the torch center was attributed to the migration and solidification of molten SiO2. This suggests that large and complex Cf/SiC incorporating UHTCs can effectively form a protective oxide layer, even under conditions where SiO2 displacement occurs. The findings underscore the importance of integrating geometric considerations into the design of ultra-high temperature ceramic composites to achieve the thermal and ablation resistance required for advanced high-temperature applications.
        4,000원
        3.
        2022.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this work, the ablation behavior of monolith ZrB2-30 vol%SiC (Z30S) composites were studied under various oxy-acetylene flame angles. Typical oxidized microstructures (SiO2/SiC-depleted/ZrB2-SiC) were observed when the flame to Z30S was arranged vertically. However, formation of the outmost glassy SiO2 layer was hindered when the Z30S was tilted. The SiC-depleted region was fully exposed to air with reduced thickness when highly tilted. Traces of the ablated and island type SiO2 were observed at intermediate flame angles, which clearly verified the effect of flame angle on the ablation of the SiO2 layer. Furthermore, the observed maximum surface temperature of the Z30S gradually increased up to 2,200 °C proving that surface amorphous silica was continuously removed while monoclinic ZrO2 phase began to be exposed. A proposed ablation mechanism with respect to flame angles is discussed. This observation is expected to contribute to the design of complex-shaped UHTC applications for hypersonic vehicles and re-entry projectiles.
        4,000원
        4.
        2014.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The study discusses remote control torch system that is equipped with CO2 double wire reel. The welding machine is 30m away from the wire feeder at the industrial site and the feeder is three to five meters away from the torch. Accordingly, the welders cannot control the current and voltage that meets the welding condition during work when they are working at a place that prevents them from seeing the control panel such as inside a vehicle or tank or at a far work site. They also have no choice but to stop working to change the wire reel when it is completely burned out. Such work suspension resulting from frequent moves to adjust current and voltage as well as replace the wire and subsequent cooling causes welding defects. The study produced a remote control torch equipped with double wire reel by simplifying and streamlining the existing CO2 functions to reduce the troubling issue. The remote control torch equipped with double wire reel and the existing CO2 /MAG welding torch were applied as V-groove butt in the vertical position using 9mm rolled steel for SM50A welding structure. After completion of welding, the condition of welded surface beads went through visual inspection as well as radiographic inspection to analyze the welding quality inside the welded part. The study also evaluated reduction of welding defects, cost saving, the replacing performance against the existing commercial welders and the effect on possible compatibility
        4,000원
        5.
        2014.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In GMAW welding used mostly at the scene of a welding industry, welders can not see control panels in internal welds of vehicles and tanks, and can not adjust the current and voltage properly during the welding, which is caused by distance from the working area. Therefore, welders have to move to control the current and voltage by stopping welding. This, however, can result in the welding defects by momentary cooling. In this research related to the existing GMAW welding methods and the manners with the remote control torch their performances were evaluated by comparing and analyzing the welds of V-type butt using SM50A 6 mm and welding structural rolled steels. As the result of conducting the visual inspection and bending test one by one against the V-type butt welds, the amount of spatter by the remote control torch method showed reducing effects about five times lower and it had a performance that did not affect the weld defects by displaying suitable effects on the bending test of welds. Consequently, the experimental study on the possibility of replacement and compatibility with the existing commercial welder for the remote control torch was performed.
        4,000원
        6.
        2010.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper considers a problem of optimizing torch paths to cut stock plates nested with open contours. For each contour, one of the two ending points is to be selected as a starting point of cutting with the other being the exit point. A torch path is co
        4,000원
        9.
        2023.11 서비스 종료(열람 제한)
        Once decommissioning begins, it is expected that large amount of radioactive wastes will be produced in a short period of time. The expected amount of radioactive wastes from Kori unit 1 NPP are approximately 80,000 drums (base on 200 L). By minimizing the amount of radioactive wastes generated through decontamination and reduction, KHNP has set the final target for the amount of radioactive wastes to be delivered to the disposal site at approximately 14,500 drums. Here, plasma torch melting technology is an essential technology for radioactive wastes treatment during nuclear power plants decommissioning and operation, because of its large volume reduction effects and the diversity of disposable wastes. KEPCO KPS was able to secure experience in operating Plasma Torch Melter (PTM) by conducting a research service for ‘development of plasma torch melting system advancement technology’ at KHNP-CRI. This study will compare kilo and Mega-Watt class PTM, largely categorized into facility configurations, operating parameters, and waste treatment. Based on this study, it would be desirable to operate PTM with approximate capacity according to the frequency and amount of waste production, and suggest volume for a kilo and Mega-watt class plasma torch in the melting furnace respectively. This plays to its strengths for both a kilo and Mega-watt class PTM.
        10.
        2023.11 서비스 종료(열람 제한)
        A disposal of radioactive wastes is one of the urgent issues in worldwide. Considering upcoming plans for decommissioning of nuclear power plants, this problem is unavoidable and should be discussed very thoughtfully before long. There are variety of methods to deal with radioactive wastes, including Incineration process, conventional gasification process and plasma gasification process and so on. Among them, plasma gasification process is in the limelight due to its ecofriendly features and very large volume reduction effects. So, lots of countries like Japan, Taiwan, Russia, Bulgaria are already utilizing commercial plasma melting facilities and researching their own characteristics & disposal abilities and so on. Within the scope of this paper, I would like to introduce other countries current status of plasma melting facilities, and reach the conclusion on the directions to go for realistic radioactive wastes treatment.
        11.
        2023.11 서비스 종료(열람 제한)
        Plasma torch melting technology has been considered as a promising technology for treating or reducing the radioactive waste generated by nuclear power plants. In 2006, IAEA announced that the technology is able to treated regardless of the type of target wastes. Because of the advantage, many countries have been funding, researching and developing the treatment technology. In this study, oversea plasma torch melting facilities for radioactive wastes treatment are reviewed. Also, plasma torch melting facility developed by KHNP CRI is briefly introduced.
        12.
        2023.11 서비스 종료(열람 제한)
        Republic of Korea is preparing to decommission Kori Unit 1 and Wolsong Unit 1. Decommissioning of a nuclear power plant proceeds in the following stages: shutdown, transition period, decontamination, cutting, waste treatment, and site restoration. When nuclear power plant is decommissioned, It is expected that approximately 80,000 drums of radioactive waste will be generated per nuclear power plant. Therefore, various technologies are being researched and developed to reduce this to approximately 14,500 drums. Technologies for waste volume reduction are largely mechanical and electrical/thermal methods. Representative examples of mechanical volume reduction technologies include super compactors and electrical/thermal volume reduction technologies include induction and plasma torch furnaces. Both technologies are effective reduction technologies, but the reduction ratio varies depending on the type or condition of waste before treatment. For example, as a result of testing waste reduction using a super compactor at NUKEM in Germany, the reduction ratio was found to be between 1.3 and 7 depending on the type or condition of waste such as chips, ash, scrap metal, sand, etc. And according to IAEA-TECDOC-1527, when reducing the volume of metals, aluminum, lead, copper, brass, etc. using induction melting, the waste volume reduction ratio is 5 to 20. In this paper, referring to these results, a melting test was conducted using a previously developed plasma torch with an output of more than 100 kW. And volume reduction characteristics of this plasma torch was considered depending on waste type or condition.
        13.
        2023.05 서비스 종료(열람 제한)
        During the decommissioning of a nuclear power plant, the structures must be dismantled to a disposal size. Thermal cutting methods are used to reduce metal structures to a disposal size. When metal is cut using thermal cutting methods, aerosols of 1 μm or less are generated. To protect workers from aerosols in the work environment during cutting, it is necessary to understand the characteristics of the aerosols generated during the cutting process. In this study, changes in aerosol characteristics in the working environment were observed during metal thermal cutting. The cutting was done using the plasma arc cutting method. To simulate the aerosols generated during metal cutting in the decommissioning of a nuclear power plant, a non-radioactive stainless steel plate with a thickness of 20 mm was cut. The cutting condition was set to plasma current: 80 A cutting speed: 100 mm/min. The aerosols generated during cutting were measured using a highresolution aerosol measurement device called HR-ELPI+ (Dekati®). The HR-ELPI+ is an instrument that can measure the range of aerodynamic diameter from 0.006 μm to 10 μm divided into 500 channels. Using the HR-ELPI+, the number concentration of aerosols generated during the cutting process was measured in real-time. We measured the aerosols generated during cutting at regular intervals from the beginning of cutting. The analyzed aerosol concentration increased almost 10 times, from 5.22×106 [1/cm3] at the start of cutting to 6.03×107 [1/cm3] at the end. To investigate the characteristics of the distribution, we calculated the Count Median Aerodynamic Diameter (CMAD), which showed that the overall diameter of the aerosol increased from 0.0848 μm at the start of cutting to 0.1247 μm at the end of the cutting. The calculation results were compared with the concentration by diameter over time. During the cutting process, particles with a diameter of 0.06 μm or smaller were continuously measured. In comparison, particles with a diameter of 0.2 μm or larger were found to increase in concentration after a certain time following the start of cutting. In addition, when the aerosol was measured after the cutting process had ended, particles with a diameter of 0.06 μm or less, which were measured during cutting, were hardly detected. These results show that the nucleation-sized aerosols are generated during the cutting process, which can explain the measurement of small particles at the beginning of cutting. In addition, it can be speculated that the generated aerosols undergo a process of growth by contact with the atmosphere. This study presents the results of real-time aerosol analysis during the plasma arc cutting of stainless steel. This study shows the generation of nucleation-sized particles at the beginning of the cutting process and the subsequent increase in the aerosol particle size over time at the worksite. The analysis results can characterize the size of aerosol particles that workers may inhale during the dismantling of nuclear power plants.
        14.
        2023.05 서비스 종료(열람 제한)
        Normally, non-metallic wastes, such as sands, concrete and asbestos are regarded as electrically non-conductive materials. However, when the temperatures are increased up to the melting point, their electrical conductivities can be greatly improved, flowing arc current. Accordingly, these nonmetallic wastes can be efficiently treated by heating them up to the electrically conducting temperatures by using a non-transferred type plasma torch, and then, melting them completely with arc currents in transferred mode of plasma torch. For this purpose, we propose a convertible plasma torch consisting of three cylindrical electrodes (rear electrode, front electrode and exit nozzle). Compared with conventional plasma torch with two cylindrical electrodes (rear electrode and front electrode), the proposed plasma torch can provide more stable plasma jet in high powered and non-transferred mode due to the presence of exit nozzle, resulting in rapid heating of the non-conductive materials.
        15.
        2023.05 서비스 종료(열람 제한)
        Nowadays, transferred type arc plasma torches have been widely present in industrial applications, in particular, using melting pool of electrically conducting materials such as arc furnace, welding and volume reduction of radioactive wastes. In these applications, the melting pools are normally employed as an anode, thus, heat flux distributions on anode melting pool need to be characterized for optimum design of melting pool system. For this purpose, we revisited the one-dimensional model of the anode boundary layer of arcs and solved governing equations numerically by using Runge-Kutta method. In addition, the direct melting process of non-combustible wastes in the crucibles were discussed with the calculation results.
        16.
        2023.05 서비스 종료(열람 제한)
        In this work, we report test results for direct melting of non-combustible wastes by using a 100 kW class transferred type plasma torch. For this purpose, non-combustible wastes consisting of metals and sands were prepared, weighed and melted by a transferred arc in a ceramic crucible with inner diameter of 150 mm. Test results reveal that 75wt% M6 iron bolts mixed with 25wt% sands were completely melted down within 140 seconds at the plasma power level of 83.8 kW, producing melting speed of 100 kg/hr and volume reduction rate of 62.8%. In addition, for simulated wastes consisting of 77.3wt% metal chips and 22.7wt% sands, the volume reduction rate high than 88% was achieved at 50 kW plasma power. These results indicate that non-combustible wastes can be treated efficiently when directly melting them by using transferred type plasma torch.
        17.
        2023.05 서비스 종료(열람 제한)
        Air conditioning facilities in nuclear power plants use pre-filters, HEPA filters, activated carbon filters, and bag filters to remove radionuclides and other harmful substances in the atmosphere. Spent filters generate more than 100 drums per year per a nuclear power plant and are stored in temporary radioactive waste storage. Plasma torch melting technology is a method that can dramatically reduce volume by burning and melting combustible, non-flammable, and mixed wastes using plasma jet heat sources of 1,600°C or higher and arc Joule heat using electric energy, which is clean energy. KHNP CRI & KPS are developing and improving waste treatment technology using MW-class plasma torch melting facilities to stably treat and reduce the volume of radioactive waste. This study aims to develop an operation process to reduce the volume of bag filter waste generated from the air conditioning system of nuclear power plants using plasma torch melting technology, and to stably treat and dispose of it. It is expected to secure stability and reduce treatment costs of regularly generated filter waste treatment, and contribute to the export of radioactive waste treatment technology by upgrading plasma torch melting technology in the future.
        18.
        2023.05 서비스 종료(열람 제한)
        A disposal of radioactive wastes is one of the critical issues in our society. Considering upcoming plans for dismantling of nuclear power plants, this problem is inevitable and should be discussed very carefully. There are variety of methods to handle with radioactive wastes, including Incineration, conventional gasification and plasma gasification. Among them, plasma gasification process is in the limelight due to its eco-friendly & stable operation, and large volume reduction effects. However, a fatal disadvantage is that it consumes more electric power than other methods, this leaves us a question of whether this process is indeed economical. Within the scope of this paper, I would like to introduce 4 cases which plasma facilities were evaluated economically in worldwide, and reach the conclusion on the economic feasibility of plasma process.
        19.
        2023.05 서비스 종료(열람 제한)
        KHNP-CRI has developed small-capacity and Mega-Watt Class PTM (Plasma Torch Melter) for the purpose of reducing the volume of radioactive waste and immobilizing or solidifying radioactive materials. About 1 MW PTM is a treatment technology that operates a plasma torch and puts drumshaped waste into a melter and radioactive waste in the form of slag is discharged into a waste container. The small-capacity PTM is a treatment technology that operates a plasma torch and puts small amounts of radioactive waste by directly putting it into the melter through a waste input machine. Mega-Watt Class PTM was able to inject radioactive waste in drums, so it was disposed of without backloging. On the other hand, The small-capacity PTM put radioactive waste without a package, and the waste input was blocked. If even small-capacity PTM put radioactive waste in the form of small packages such as drums, it is expected that various types of radioactive waste can be processed for a long time. Packaging also reduces the risk of radioactive contamination.
        20.
        2023.05 서비스 종료(열람 제한)
        Depending on the type of waste, DC plasma torch uses a transfer type operation for conductive waste and a non-transfer type operation for non-conductive waste. The transfer mode plasma torch can secure high throughput because the arc directly contacts the object and has high thermal efficiency. However, since the non-transfer mode does not have a higher thermal efficiency than the transfer mode, higher output is required to secure high throughput. A method of increasing the output of the plasma torch is increasing the current or extending the length of the plasma arc. However, the method of increasing the current affects the life of the electrode, and there is a limit to extending the arc length in the positive polarity plasma torch. Therefore, it is effective to design the plasma torch with reverse polarity to secure life and extend the arc length. In the reverse polarity plasma torch, the front electrode serves as the cathode, and the cathode point is not easy to control compared to the anode point, which may cause abnormal arcing and damage the plasma torch. This paper was conducted to investigate the conditions for securing the safety of these non-transferable reverse polarity plasma torch. The plasma torch is designed to have an output of 100 kW or less and to use the detachable nozzle to control the cathode point. The test showed that the shape of the nozzle prevented the cathode point moving outside of plasma torch and the excessive extension of the arc. Thanks to this, it was confirmed that plasma could be stably formed and abnormal arcing could also be prevented.
        1 2 3