해양사고 예방을 위해서는 사고의 원인과 결과에 대한 분석 및 진단뿐만 아니라, 사고의 발생 패턴과 변화 추이를 예측함으로 써 정량적 위험도를 제시할 필요성이 있다. 선박교통과 관련된 해양사고 예측은 선박의 충돌위험도 분석 및 항해 경로 탐색 등 선박교통 의 흐름에 관한 연구가 주로 수행되었으며, 해양사고의 발생 패턴에 대한 분석은 전통적인 통계 분석에 따라 제시되었다. 본 연구에서는 해양사고 통계 자료 중 선박교통관련 사고의 월별, 시간대별 발생 현황 데이터를 활용하여 해양사고 발생 예측 모델을 제시하고자 한다. 국내 해양사고 발생 현황 중 월별, 시간대별 데이터 집계가 가능한 1998년부터 2021년까지의 통계자료 중 선박교통 관련 데이터를 분류하 여 정형 시계열 데이터로 변환하였으며, 대표적인 인공지능 모델인 순환 신경망 기반 장단기 기억 신경망을 통하여 예측 모델을 구축하 였다. 검증데이터를 통하여 모델의 성능을 검증한 결과 RMSE는 초기 신경망 모델에서 월별 52.5471, 시간대별 126.5893으로 나타났으며, 관측값으로 신경망 모델을 업데이트한 결과 RMSE는 월별 31.3680, 시간대별 36.3967로 개선되었다. 본 연구에서 제안한 신경망 모델을 기 반으로 다양한 해양사고의 특징 데이터를 학습하여 해양사고 발생 패턴을 예측할 수 있을 것이다. 향후 해양사고 발생 위험의 정량적 제 시와 지역기반의 위험지도 개발 등에 관한 추가 연구가 필요하다.
This study intends to present a traffic node-based and link-based accident prediction models using XGBoost which is very excellent in performance among machine learning models, and to develop those models with sustainability and scalability. Also, we intend to present those models which predict the number of annual traffic accidents based on road types, weather conditions, and traffic information using XGBoost. To this end, data sets were constructed by collecting and preprocessing traffic accident information, road information, weather information, and traffic information. The SHAP method was used to identify the variables affecting the number of traffic accidents. The five main variables of the traffic node-based accident prediction model were snow cover, precipitation, the number of entering lanes and connected links, and slow speed. Otherwise, those of the traffic link-based accident prediction model were snow cover, precipitation, the number of lanes, road length, and slow speed. As the evaluation results of those models, the RMSE values of those models were each 0.2035 and 0.2107. In this study, only data from Sejong City were used to our models, but ours can be applied to all regions where traffic nodes and links are constructed. Therefore, our prediction models can be extended to a wider range.
PURPOSES : The purpose of this study is to compare applicability, explanation power, and flexibility of traffic accident models between estimating model using the statistical method and the machine learning method.
METHODS: In order to compare and analyze traffic accident models between model estimated using the statistical method and machine learning method, data acquisition was conducted, and traffic accident models were estimated using statistical methods such as negative binomial regression model, and machine learning methods such as a generalized regression neural network (GRNN). Then, the fitness of model as R2, root mean square error (RMSE), mean absolute percentage error (MAPE), accuracy, etc., were determined to compare the traffic accident models.
RESULTS: The results showed that the annual average daily traffic (AADT), speed limits, number of lanes, land usage, exclusive right turn lanes, and front signals were significant for both traffic accident models. The GRNN model of total traffic accidents had been better statistical significant with R2: 0.829, RMSE: 2.495, MAPE: 32.158, and Accuracy: 66.761 compared with the negative binomial regression model with R2: 0.363, RMSE: 9.033, MAPE: 68.987, and Accuracy: 8.807. The GRNN model of injury traffic accidents also showed similar results of model’s statistical significance.
CONCLUSIONS: Traffic accident models estimated with GRNN had better statistical significance compared with models estimated with statistical methods such as negative binomial regression model.
본 연구는 신호교차로 교통사고예측모형 구축 과정 중 일반적으로 제한된 변수의 선정 및 모형의 구축에만 주로 초점이 맞추어진 기존 방법론의 문제점을 개선하고, 자료조사 및 수집 과정에서 발생하는 자료의 불확실한 상태를 인정하면서 자료의 불확실성을 최소화하여 이용할 수 있는 방법론을 개발하는데 연구의 주안점을 두었다. 퍼지추론이론과 신경망이론을 이용한 모형을 구축하였고, 마지막으로 구축된 퍼지추론이론 모형 및 신경망이론 모형과 기존 회귀모형인 포아송 회귀모형간의 통계적인 검증과 실제 Data를 이용한 모형의 적정성을 검토하였다. 모형의 통계적인 검증시 기존모형에 비해 퍼지추론모형과 신경망이론모형이 더 설명력이 높은 것으로 나타났고, 검증에서도 퍼지추론이론과 신경망이론이 적절한 것으로 나타났으며 기존모형보다 사고건수를 예측하는 설명력이 높은 것으로 입증되었다. 본 연구에서 개발된 모형은 계획 및 운영단계에서 신호교차로의 안전성을 측정하는데 활용될 수 있으며, 궁극적으로는 신호교차로에서 교통사고를 줄이는데 기여할 수 있을 것으로 판단된다.
본 연구는 도로기하구조 요인과 교통사고간의 관계를 규명하기 위하여 CART분석을 이용하여 전국의 4차로 국도를 대상으로 교통사고예측모형을 개발하고, 다중회귀모형, 확률회귀모형과 CART분석모형을 비교 분석하여 개발한 모형의 적합도를 검증하였다. 연구결과로는 첫째, 변수간의 복합적인 상호관계를 설명할 수 있는 CART분석을 이용하여 국도의 교통사고 예측모형을 개발하고 도로기하구조 요인에 따라 표준교통사고율을 의미하는 교통사고발생도표를 제시하였다. 둘째, CART분석모형에 근거하여 교통사고 발생률에 큰 영향을 미치는 도로기하구조 요인이 구간거리(km), 횡단보도폭(m), 횡단길어깨(m), 교통량 순으로 나타났다. 셋째, CART분석모형의 적합도 검증결과, CART분석모형이 실제교통사고율을 타 모형에 비해 전반적으로 잘 묘사하고 있었으나, 각 모형별로 교통사고율의 크기에 따라 교통사고율이 비교적 낮은 구간에서는 다중회귀모형이, 평균이상의 교통사고율을 나타내는 구간에서는 포아송 회귀모형의 예측력이 높았으며, CART분석모형은 교통사고율의 크기와 상관없이 우수한 예측력을 보였다. 넷째, 도출된 교통사고발생도표는 도로기하구조 조건에 따른 표준교통사고율을 제시해주기 때문에 도로설계 시에 안전한 기하구조 설계요소 선정기준을 제시 할 뿐만 아니라, 교통사고 잦은 지점개선사업추진 시 사업의 우선순위를 판단할 수 있는 기준을 제시하는 등 정책적 활용도가 매우 높을 것으로 판단된다.