최근 국제해사기구의 해양환경오염규제가 강화되어 오고 있다. 선박의 에너지 효율지수는 선박의 설계관점에서 매우 중요 한 지표이다. 더욱이 새롭게 건조되는 선박은 물론 기존 운항 선박에도 에너지 효율지수를 만족하도록 강화하고 있다. 이에 따라 운항 되고 있는 기존선박의 에너지 효율지수를 높이기 위해 선수 벌브개조, 운항 중 트림 최적화, 에너지 절감장치등 다양한 방법이 적용되 고 있다. 본 연구에서는 전산 유체역학을 이용하여 다양한 선수/선미 트림조건에서 선박의 저항성능을 계산하고 분석하였다. 이를 바 탕으로 최적화 된 트림조건에서 선박의 저항성능을 더욱 개선하기 위해 선수 벌브의 형상을 재설계하였다. 그 결과 정수 중에서 개선 된 벌브 형상을 적용한 경우, 유효마력이 약 5% 향상되는 것을 확인하였으며, 향후 파도 중에서 재설계된 벌브형상이 저항성능에 미치 는 영향을 조사할 예정이다.
본 연구에서는 Froude 수 1.0, 길이 약 10 m 급 소형 고속선의 저항성능과 승선감을 향상시키기 위해 선미 끝단에 트림 탭을 부착하여 항주자세를 제어하였고, 트림 탭의 제원에 따른 성능을 확인하기 위해 CFD 해석을 수행하였다. 먼저 선행 연구로부터 수치 해석이 수행되는 스케일에 따라 결과에 차이가 있는 것이 확인되었고, 이를 피하고자 실선 스케일에서의 해석을 수행하였다. 부착된 트림 탭의 코드 길이는 LPP의 0.5, 1.0, 1.5 %였으며, 선저 면과의 각도는 5 간격으로 변화를 주었다. 트림 탭은 선박의 선미트림과 부상량을 감소시키는 효과가 있었으며, 이 효과는 트림 탭의 선저 면과의 각도가 클수록, 코드 길이가 길수록 증가하였다. 이로 인해 압력 저항은 감소하고 전단저항은 증가하였으며, 두 성분의 변화량에 따라 전 저항 저감율이 결정되었다. 결과로부터 대상 선박의 최적 항 주자세는 약 1.5 의 선미트림으로 특정되었고, 이때 저항성능은 약 27 % 개선되었다.
Assembly of automobile interior materials is very important for assembly and inspection such as sensitivity and noise reduction. Particularly, since assembling parts of automobile interior parts is manually assembled by a worker, a claim due to poor assembly sometimes occurs. In addition, as the labor cost rises, automobile assembly line adopts automatic assembly device as the concept of smart factory in assembly process. Therefore, in this study, we intend to develop automatic assembly device of the door trim for reducing the field claim, improving the productivity, and reducing the assembly failure.
소형선박 설계에 있어 항주에 따른 설계 종경사 결정은 선체저항 뿐만 아니라 항주 안정성에 많은 영향을 주고 있다. 이는 초기 설계 시 선박의 무게중심 결정을 시작으로 대부분 결정된다. 본 연구는 소형 쌍동선박에 대해 수치해석을 통한 수직방향 무게중심 변화에 따른 종경사 영향을 확인하고, 이를 모형시험에서 결과를 검토하였다. 다양한 수직방향 무게중심 변화에 따른 모형시험 검토는 이뤄지지 못했지만, 향후 신조 소형선박 초기설계시 보다 나은 종경사 자세를 고려한 수직방향 무게중심 위치 제시를 목적으로 연구를 수행하였다. 수치해석 결과의 검증을 위하여 모형시험과 자세 비교를 수행하였다. 무게중심의 변화에 따른 종경사 각도 및 저항성능의 변화가 연구되었다.
선박의 다양한 흘수 및 트림 조건은 조종성능 추정을 위한 중요한 요소 중 하나이다. 본 논문에서는 세 종류의 흘수 및 트림 조건에서의 해상 시운전 자료를 바탕으로 하여 선체 유체력 미계수를 추정하였다. 시스템 식별법(system identification)의 하나인 수학적 최 적화(mathematical optimization method) 및 Rheinmetall Defense사의 선박 운동 모델을 적용한 fast time 시뮬레이션 소프트웨어를 이용하여 시운 전 항적데이터 및 관련 시뮬레이션 자료를 이용하여 선체 유체력 미계수를 추정하였다. 최적화 된 계수를 적용한 시뮬레이션 결과는 기존 계수 추정식을 사용한 시뮬레이션 결과와 대비하여 해상 시운전 계측 결과와 유사함을 보여주었으며 추가로 진행된 2차 검증 결과에서도 상대적으로 높은 유사함을 확인하였다.
선박사고는 환경적인 요인으로 인해 경사가 항상 존재한다. 선박의 경사는 선내 재실자의 피난 이동속도뿐만 아니라 선내 화재성 장에도 영향을 미치기 때문에 화재해석 시 경사조건을 고려하여 위험분석을 할 필요가 있다. 이에 이 연구에서는 FLUENT를 이용하여 선박의 횡경사와 종경사 변화에 따라 산정된 온도결과 값에 의해 화재에 미치는 영향을 분석하였다. 화원의 위치를 기준으로 횡경사가 –10°일 때 37초, 종경사는 –10°일 때 36초 이내에 피난을 해야 하는 반면, 횡경사가 +10°, 종경사가 +10°인 경우 피난에 영향을 미치지 않을 것으로 예측되었다. 이와 같은 결과를 바탕으로, 선박화재 시 화재발생위치를 기준으로 횡경사와 종경사를 고려하여 피난유도 및 대책을 마련해야함을 확인하였다.
The displacement Deep-V catamaran concept was developed in Newcastle University(UNEW) through development of the systematic Deep-V catamaran series. One of the most important Deep-V catamaran launched to date is Newcastle University's own multi-purpose research vessel, The Princess Royal. The vessel was launched in 2011 and enhanced the Deep-V catamaran concept further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. It was however identified that the vessel has substantial amount of dynamic trim that limited the visibility of the captain. The dynamic trim also increased the wave-making resistance thereby preventing the vessel from attaining its maximum speed in certain sea states. This paper therefore presents the application of devices such as Trim Tabs, Interceptors, Transom Wedges and Integrated Transom Wedges-Tabs to control the dynamic trim and improvement of fuel efficiency of the vessel. All of these energy saving devices were fitted into a model for tests in Newcastle University's Towing Tank. Model test verification confirmed that the optimum appendage was the interceptors, they produced a 5% power saving and 1.2 degree trim reduction at 15 knots, and investigations of full scale trials will be scheduled with and without application of device to compare the improvement of performance.
It is very important and necessary for safe maneuvering and piloting of a VLCC to know the quantity of her sinkage and trim changes in advance when she enters into shallow water area from deep sea. It is already well known that the quantity of sinkage and trim of a vessel change when she navigates between the sea areas of different depths. In this paper, the authors induced five mathematic formulas to compute the quantity of hull sinkage and trim changes arising from the different conditions and speeds of vessels and sea depth. Also they checked and examined the conditions of 131 VLCC class vessels with the over all lengths between 200 to 360 meters and evaluated mean values of Cb, Lpp/B, Lpp/dm, the trim and mean draft(dm) of them according to the different groups of length and loaded conditions. Using the calculating math formulas and loaded conditions, the authors math tables to find the quantity of hull sinkage and trim changes due to the different size, condition and speed of vessels and the depth of sea.