검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 14

        2.
        2022.10 구독 인증기관·개인회원 무료
        This study presents an example of creating and optimizing a task sequence required in an automated remote dismantling system using a digital manufacturing system. An automated remote dismantling system using a robotic arm has recently been widely studied to improve the efficiency and safety of the dismantling operations. The task sequence must be verified in advance through discrete eventbased process simulation in a digital manufacturing system to avoid problems in actual remote cutting operations as the main input of the automated remote dismantling system. The laser cutting method can precisely cut complicated target structures such as reactor internals with versatility, but a robot and a pre-prepared program are required to deploy sophisticated motion of the laser cutting head on the target structure. For safe and efficient dismantling operations, the robot’s program must be verified in advance in a virtual environment that can represent the actual dismantling site. This study presents creating and optimizing the task sequence of a robotic underwater laser cutting as part of the project of developing an automated remote dismantling system. A task sequence is created to implement the desired cutting path for the target structure using the automated remote dismantling system in the virtual environment. The task sequence is optimized for the posture of the laser cutting head and the robot to avoid collisions during the operation through discrete event-based process simulation since the target structure is complicated and the volume occupied by the laser cutting head and the robot arm is considerably large. The task sequence verified in the digital manufacturing system is demonstrated by experiments cutting the target structure along the desired cutting path without any problems. The various simulation cases presented in this study are expected to contribute not only to the development of the automated remote dismantling system, but also to the establishment of a safe and efficient dismantling process in the nuclear facility decommissioning.
        3.
        2022.10 구독 인증기관·개인회원 무료
        For highly contaminated elements such as reactor pressure vessels or reactor internals, it is a viable option to cool-down and dismantle these elements in submerged (e.g. underwater) state. Several tools and processes such as saw cutting, water jet cutting or plasma cutting are currently used for underwater cutting, with each of them having their own advantages and disadvantages. The main disadvantage of these existing methods, especially saw and water jet cutting, is the generation of secondary waste that then needs to be filtered out of the water. In addition, in the case of water jet cutting, a considerable amount of abrasive material is added, which must also be stored. To overcome this drawback, the feasibility of using laser cutting under water to minimize secondary waste production has been actively studied recently. One of the challenges with the underwater laser cutting is to visually monitor the cutting process. Flowing air bubbles generated by the cutting gas and the flashing light emitted from the laser and melting material prohibit visual monitoring of the cutting process. This study introduces a method to enhance the video from a monitoring camera. Air bubbles can be detected by computing optical flows and the video quality can be enhanced by selective removal of the detected bubbles. In addition, suppressing the frame image update from flashing light area can also effectively enhance the video quality. This paper describes the simple yet effective video quality enhancement method and reports preliminary results.
        8.
        2021.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        For application in nuclear decommissioning, underwater laser cutting studies were conducted on thick stainless-steel plates for various cutting directions using a 6 kW fiber laser. For cutting along the horizontal direction with horizontal laser irradiation, the maximum cutting speed was 110 mm∙min−1 for a 48 mm thick stainless-steel plate. For cutting along the vertical direction with horizontal laser irradiation, a maximum speed of 120 mm∙min−1 was obtained for the same thickness, which confirmed that the cutting performance was similar but slightly better. Moreover, when cutting with vertically downward laser irradiation, the maximum cutting speed was 120 mm∙min−1 for a plate of the same thickness. Thus, the cutting performance for vertical irradiation was nearly identical to that for horizontal irradiation. In conclusion, it was possible to cut thick stainless-steel plates regardless of the laser irradiation and cutting directions, although the assist gas rose up due to buoyancy. These observations are expected to benefit laser cutting procedures during the actual dismantling of nuclear facilities.
        4,000원