Background: The scapulo-thoracic musculatures including serratus anterior (SA), upper trapezius and lower trapezius can provide shoulder stability and functional shoulder movement.
Objects: The muscle activities of upper and lower SA were compared during three different scapular protraction exercises in healthy individuals in sitting position.
Methods: Twenty-five healthy subjects were participated. Electromyography device was used to measure muscle activity of upper and lower SA and trapezius muscles. Each subject was asked to perform three different scapular protraction exercises (scapular protraction [SP], SP with self-resistance [SPSR], SPSR with hand-exerciser [SPSRH]) in random order. One-way repeated measures analysis of the variance and a Bonferroni post hoc test were used.
Results: The muscle activity of lower SA muscle was significantly different among three conditions (SP vs. SPSR vs. SPSRH) (p < 0.01). The lower SA muscle activity was significantly greater during SPSRH compared to SP and SPSR, which required joint stability more than SP and SPSR (p < 0.01).
Conclusion: SPSRH exercise can be recommended to facilitate the muscle activity of lower SA. In addition, the intramuscular variation in the upper and lower SA during scapular protraction exercise is required to consider the effective rehabilitation.
The objective of this study was to determine the duration of maintained calf muscle flexibility gained in young adults with calf muscle tightness, as measured by increases in ankle active and passive dorsiflexion range of motion (DFROM) after three stretching interventions. Twenty subjects (5 men and 15 women) with calf muscle tightness received the following three stretching interventions in one leg (assigned at random): static stretching (SS), eccentric training on stable surface (ETS), and eccentric training on unstable surfaces (ETU). The subjects received all three interventions to the same leg, applied in a random order. Each intervention had a break of at least 24 h in-between, in order to minimize any carryover effect. Each intervention used two types of stretching: with the calf muscle stretched and both knees straight, and with the knee slightly bent in order to maximize the activation of the soleus muscle. All three interventions were performed for 200 seconds. We measured the duration of maintained calf muscle flexibility through active and passive ankle DFROM before intervention, immediately after intervention (time 0), and then 3, 6, 9, 15, and 30 min after intervention. We found a difference in the duration of maintained calf muscle flexibility between the three interventions. In the ETS and ETU interventions, a significant improvement in calf muscle flexibility, both ankle active and passive dorsiflexion ranges of motion (ADFROM and PDFROM), was maintained for 30 min. In the SS intervention, however, ADFROM before 9 min and PDFROM before 6 min were statistically different from the baseline. Our results suggest that ETS and ETU may be more effective than SS for maintaining calfmuscle flexibility in young adults.
The purpose of this study was to evaluate the changes in the electromyographic (EMG) activity of the trunk and the lower limb muscles during quiet standing on an unstable surface while wearing low-heeled shoes (3 ㎝), high-heeled shoes (7 ㎝) and without footwear (0 ㎝) in 20 young healthy women. The subjects stood on an unstable surface for 30 seconds. We examined the differences in the EMG data of the erector spinae, rectus abdominis, biceps femoris, rectus femoris, tibialis anterior, and the gastrocnemius medialis muscle. A one-way repeated analysis of variance was used to compare the effects of shoe heel height on the EMG activity with the level of significance set at α=.05. The EMG activity of the erector spinae and the rectus femoris were significantly increased (p<.05) in the subjects who wore elevated heel height, while the tibialis anterior and the gastrocnemius medialis were significantly decreased (p<.05). However, the rectus abdominis and the biceps femoris exhibited no significant difference among the three conditions. The above results indicate that wearing high-heeled shoes may change the postural strategy. The findings of this study suggest that excessive heel height could contribute to an increased fall risk during quiet standing.
The purpose of this study was to determine the effectiveness of sit-to-stand training on unstable surfaces in individuals with stroke. Nineteen subjects with chronic stroke were divided into two groups: an experimental group (10 subjects) and a control group (9 subjects). They received 30 minutes of Neuro-developmental therapy (NDT) treatment, and sit-to-stand exercise for 15 minutes three times a week for four weeks. During the sit-to-stand training, the experimental group performed on an unstable AIREX balance pad, but the control group performed on a stable surface. Balance ability and weight-bearing distribution during quiet standing were measured before and after training period using the 7-item Berg balance scale-3P (BBS-3P) and the Five-times-sit-to-stand test (FTSST). In addition, the muscle strength of the knee extensor was evaluated before and after the training period. The results were as follows: 1) The weight-bearing distribution forward of the affected leg, increased significantly in the experimental group after the four-week intervention (p<.05), 2) The 7-item BBS-3P and FTSST increased significantly in the experimental group after the four-week intervention (p<.05), 3) The knee extensor muscle strength in both groups increased significantly after the four-week intervention (p<.05). In conclusion, the results of this study did not show that the sit-to-stand training on an unstable surface was more effective than on a stable surface. However, the results suggested that sit-to-stand training is effective in the balance training of stroke patients.