Background: The CKCUES test evaluates the functional performance of the shoulder joint. The CKCUES test scores CKC exercises of the upper limbs to examine shoulder stability. Although the CKCUES test provides quantitative data on functional ability and performance, no study has determined the relationship between CKCUES scores and SA and TB muscle strength.
Objects: The objective of this study is to determine the relationship between the CKCUES test scores and the strength of the SA and TB muscles in the CKCUES and unilateral CKCUES tests. Methods: Sixty-six healthy male volunteers participated in the study. A Smart KEMA strength sensor measured SA and TB muscle strength. Two parallel lines on the floor indicated the initial hand placement to start CKCUES tests. For 15 seconds, the subject raises one hand and reaches over to touch the supporting hand, then returns to the starting position.
Results: The correlation between the CKCUES test scores and the strength of the SA was strong (r = 0.650, p < 0.001), and the TB was moderate (r = 0.438, p < 0.001). The correlation between the unilateral CKCUES test and the strength of the SA of the supporting side was strong (r = 0.605, p < 0.001), and swing side was strong (r = 0.681, p < 0.001). The correlation between the unilateral CKCUES test and the strength of the TB of the supporting side was moderate (r = 0.409, p < 0.001), and swing side was moderate (r = 0.482, p < 0.001).
Conclusion: Our study showed that the CKCUES test had a strong association with isometric strength of SA and moderate association with that of TB. These findings suggest that the CKCUES test can evaluate the function of the SA. Moreover, the unilateral CKCUES test can evaluate unilateral shoulder function.
Background: The scapulo-thoracic musculatures including serratus anterior (SA), upper trapezius and lower trapezius can provide shoulder stability and functional shoulder movement.
Objects: The muscle activities of upper and lower SA were compared during three different scapular protraction exercises in healthy individuals in sitting position.
Methods: Twenty-five healthy subjects were participated. Electromyography device was used to measure muscle activity of upper and lower SA and trapezius muscles. Each subject was asked to perform three different scapular protraction exercises (scapular protraction [SP], SP with self-resistance [SPSR], SPSR with hand-exerciser [SPSRH]) in random order. One-way repeated measures analysis of the variance and a Bonferroni post hoc test were used.
Results: The muscle activity of lower SA muscle was significantly different among three conditions (SP vs. SPSR vs. SPSRH) (p < 0.01). The lower SA muscle activity was significantly greater during SPSRH compared to SP and SPSR, which required joint stability more than SP and SPSR (p < 0.01).
Conclusion: SPSRH exercise can be recommended to facilitate the muscle activity of lower SA. In addition, the intramuscular variation in the upper and lower SA during scapular protraction exercise is required to consider the effective rehabilitation.
Winged scapular (WS) causes muscle imbalance with abnormal patterns when moving the arm. In particular, the over-activation of the upper trapezius (UT) and decrease in activity of the lower trapezius (LT) and serratus anterior (SA) produce abnormal scapulohumeral rhythm. Therefore, the SA requires special attention in all shoulder rehabilitation programs. In fact, many previous studies have been devoted to the SA muscle strength training needed for WS correction. Objects: The purpose of this study was to investigate the effect of shoulder girdle muscle and ratio according to the angle of shoulder abduction and external weight in supine position. Methods: Twenty three WS patients participated in this experiment. They performed scapular protraction exercise in supine position with the weights of 0 ㎏, 1 ㎏, 1.5 ㎏, and 2 ㎏ at shoulder abduction angles of 0˚, 30˚, 60˚, and 90˚. The angle and weight applications were randomized. Surface electromyography (EMG) was used to collect the EMG data of the SA, pectoralis major (PM), and UT during the exercise. The ratio of PM/SA and UT/SA was confirmed. Two-way repeated analyses of variance were used to determine the statistical significance of SA, PM, and UT and the ratios of PM/SA and UT/SA. Results: There was a significant difference in SA according to angle (p<.05). Significant differences were also identified depending on the angle and weight (p<.05). The angle of abduction at 0˚, 30˚ and weight of 2 ㎏ showed the highest SA activity. However, there was no significant difference between PM and UT (p>.05). There was a significant difference between PM/SA and UT/SA in ratio of muscle activity according to angle (p<.05). Significant differences were found at PM/SA angles of 30˚, 60˚ and 90˚ (p<.05). For UT/SA, significant difference was only observed at 90˚ (p<.05). Conclusion: Based on the results of this study, in order to strengthen the SA, it was found to be most effective to use 1 and 1.5 ㎏ weights with abduction angles of 0˚ and 30˚ at shoulder protraction in supine position.
Background: Methods for exercising serratus anterior (SA) and upper trapezius (UT) muscles are important for the recovery of patients with various shoulder disorders, yet the efficacy of closed or open kinetic chain exercises have not yet been evaluated. Objects: The purpose of this study was to compare the activation of the SA and UT muscles during scapular protraction considering both closed and open kinetic chain exercises. Methods: Thirty subjects were randomly divided into experimental groups (closed kinetic chain exercise) and control groups (open kinetic chain exercise) in which scapular protraction was performed at 90° or 125° shoulder flexion. Electromyographic activity data were collected from the SA and UT muscles per position and exercise method. Results: Separate mixed 2-way analysis of variance showed significant differences in the activation of the SA (F1,28=6.447, p=.017) and the UT (F1,28=35.450, p=.001) muscles between the groups at 90° and 125° shoulder flexion. Also, the SA/UT ratio measures at 90° and 125° shoulder flexion significantly differed between the groups (F1,28=15.457, p=.001). That is, the closed chain exercise was more effective than open chain exercise for strengthening the SA muscle and controlling the UT muscle, 125° of shoulder joint was more effective than 90°. Conclusion: The findings suggest that scapular protraction with shoulder 125° flexion at the closed kinetic chain exercise may be more effective in increasing SA muscle activation and decreasing UT muscle activation as well as increasing the SA/UT ratio than open kinetic chain exercise.
The aim of this study was to compare the activity of the upper trapezius (UT) and serratus anterior (SA) and ratio of UT to SA during shoulder elevations. Ten subjects with UT pain (UTP) and 13 subjects without UTP participated in this study. Subjects with a UTP of over five in a pain intensity visual analogue scale (0-10 ㎝) for more than 2 months and latent myofascial trigger points (MTrPs) in the UT muscle were included in the UTP group. Electromyography (EMG) data of UT and SA at 1st and 10th elevations were analyzed. Two-way repeated analyses of variance were used to compare the EMG activity of UT and SA and the ratio of UT to SA during shoulder elevations between groups with and without UTP. There was a significant increase in UT/SA ratio in the group with UTP compared to the group without UTP (p=.01). The activity of UT and SA measured at the 10th elevation was significantly greater than that in the first elevation (p<.05). The activity of SA was significantly greater in the group without UTP than the group with UTP (p=.03). However, there was no significant difference between groups with and without UTP in terms of UT activity (p=.28). These results indicate that UTP may have relevance to the increased muscle activity ratio of UT to SA during shoulder elevations.
To reduce winging scapula, various exercise protocols have been widely used by clinicians. Selective serratus anterior strengthening, and restoring balanced function, are especially recommended to reduce winging scapula. The purpose of this study was to investigate visual biofeedback using a real time video camera display system for monitoring scapular winging during arm lowering. For this study, 13 males with winging scapular were recruited during arm lowering. Electromyography (EMG) activity was recorded from the serratus anterior (SA) and upper trapezius (UT) of the right side and compared with normal EMG activity using a paired t-test. The study showed, through visual biofeedback, that EMG activity significantly increased in the SA and significantly decreased in the UT (p<.05). These results suggest that visual biofeedback can be recommended as an effective method for scapular eccentric control, to prevent scapular winging during arm lowering.