The International Maritime Organization(IMO)는 2020년 1월 1일부터 국제항해 선박에 사용되는 모든 연료의 황분을 0.5 % 이하로 제한하고 있다. 연료유 황 함유량 규제 대응을 위해 LNG 선박, SOx scrubbers, 저유황유(Very Low-Sulfur Fuel Oil, VLSFO) 사용 등이 고려되고 있으며, 이 중 투자비용이 상대적으로 적은 저유황유가 선호되고 있다. 따라서 저유황유를 사용하는 선박이 증가함에 따라 오염사고 위험성이 높아질 것으로 예상된다. 특히, 해수 온도가 저유황유의 유동점 이하로 유출될 경우 고형화됨에 따라 방제에 어려움을 겪고 있는 사례도 나타나고 있다. 본 논문에서는 국내서 생산되는 저유황유 6종과 고유황유(MF380) 1종에 대해 해수 온도 조건에 따라 유처리제의 분산 능력을 평가하였다. 연구결과, 저유황유는 국내 기준(0.5 min 정치 60 % 이상, 10 min 정치 20 % 이상)을 만족하지 못했으며, 고유황유에 비해 상대적으로 낮은 유화율을 보였다. 본 연구결과는 저유황유가 해상에 유출될 경우, 방제방향을 설정하는 데 활용될 수 있을 것으로 기대된다.
국제해사기구(IMO)의 황함유량 규제에 따르는 저유황연료유는 생산 공정에 따라 다양한 물리화학적 특성을 가지게 된다. 본 연구는 저유황연료유 및 저유황-고유황 혼합연료유의 물리화학적 특성연구 결과를 해양오염 방제대응의 기초자료로 활용하고자 한다. 연구에 사용된 혼합연료유는 황함유량이 0.46 mass%인 저유황연료유와 0.36 mass%인 저유황연료유에 고유황연료유를 25, 50, 75 mass% 혼합하여 제조하였다. 이 혼합연료유에 대해 동점도, 유동점 및 Saturates, Aromatics, Resins, Asphaltenes(SARA)분포 등 물리화학적 특성에 대해 실험실 연구를 하였다. 동점도가 높고 유동점이 낮은 특징의 고유황연료유가 75 mass% 혼합함에 따라, 혼합연료유의 동점도는 350.2 %까지 증가 하였으며, 유동점이 23℃와 -11℃의 저유황연료유는 각각 -3℃ 및 -6℃까지 유동점이 내려가거나 올라갔다. Asphaltenes 분포가 적은 저유황연료유에 고유황연료유를 혼합함에 따라, Saturates분포는 68.8 %까지 감소하고, Asphaltenes분포는 1,417 %까지 크게 증가하였다.