The wheat-rye translocations are world widely used in wheat breeding. Among the various forms of wheat-rye translocation, the 1RS (short arm of rye chromosome 1) translocations are the most widely used because of the valuable genes (e.g. biotic / abiotic resistance genes) introduced from rye. We have developed a new wheat-rye cultivar ‘TRANS’ which have freezing resistance and high yield in this study. ‘TRANS’ is a new wheat-rye translocation cultivar developed by crossing between common wheat ‘Keumkangmil’ and ‘951188-G3-G1’, a 1AL.1RS translocation derived from ‘Fleming’ with the aim of high yield and resistant genes to various unfavorable environments carried by 1RS. ‘TRNAS’ have clearly different genetic and agronomic traits to the control cultivar ‘Keumkangmil’. The heading date and maturity of ‘TRANS’ are later than that of ‘Keumkangmil’. ‘TRANS’ has 1023 spike number per square meters and grain yield of 541 kg/10a, which are higher than ‘Keumkangmil’ (904 spike number/m2 and 504 kg/10a yield). ‘TRANS’ showed winter hardiness and powdery mildew resistance in artificial infection test and field evaluation. ‘TRANS’ gives lower flour yield than ‘Keumkangmil’ but ash and protein content were similar to that of ‘Keumkangmil’. The color of flour and noodle dough of ‘TRANS’ were darker than ‘Keumkangmil’. Quality parameters related to milling, flour quality, noodle dough and end-use quality of ‘TRANS’ indicates that ‘TRANS’ is soft wheat suitable for noodle making. ‘TRANS’ can be cultivated in entire part of Korea. Registration Grant No.: 4695
Wheat-rye translocation lines are widely used in wheat breeding programmes by reason of biotic stress tolerances. Though there have been a number of researches regarding abiotic stress tolerance, the tolerance of the lines depends on wheat genetic background, not on rye chromosome. Here, we investigated wheat-rye translocation specific transcripts derived from cDNA-AFLP under drought stress, which may help to elucidate the reaction under the stress. ‘OK91G117’ (1BL.1RS translocation) and ‘OK91G144’ (non-translocation) were used as materials, which are near-isolines for 1RS. 25% PEG 6000 was added in culture solution to simulate drought condition and root tissues were sampled at each 0 h, 3 h, 6 h, 12 h, 24 h, and 48 h after PEG treatment for RNA extraction. As a result of cDNA-AFLP, TDFs (transcript derived fragments) that were specific to OK91G117 were sequenced. GO functions of each sequenced TDF were annotated by Blast2GO using standard parameter with cut-off level 3 and mapped to the GO term (i.e. biological process; BP, molecular function; MF, cellular component; CC). The term with “organic substance metabolic process”, “primary metabolic process”, and “cellular metabolic process” account for almost 50 % of BP. The most represented terms among probes classified to MF were “transferase activity” and most of TDF were annotated in “cell part” of CC. In addition, rye-chromatin specific markers were developed by BLAST comparing sequence of TDF with wheat and rye genome data. RT-PCR was conducted to validate expression patterns of selected TDF. Further studies will be needed to elucidate functions of the highly expressed genes under drought stress.
Common wheat has complex genome composition of homoeologous hexaploid (AABBDD, 2n = 6x = 42) and each homoeologous genome has high similarity. Due to these complexity, wheat genome study is a large challenge to researchers for genomic and genetic study. We analyzed expressions of individual wheat genome and rye genome specific transcripts using custom array with 2BS.2RL wheat-rye translcoation. Genomic probes were synthesized within each diploid progenitors (AA, BB, DD, 2n = 14, respectively) of wheat, common wheat, and rye (RR, 2n = 14). Total RNA isolated from seedlings of T. urartu, Ae. speltoides, Ae. squarrosa, ‘Chinese Spring’, ‘Chaupon’, and 2BS.2RL were hybridized on arrays. Each homoeologous gene differentially expressed in hexaploid wheat and rye were identified on the custom array and the transcripts were clustered based on hybridization values. qRT-PCR was performed to verify the custom array result with a set of five genes by highly replicated experiments (three biological and three technical replications). The qRT-PCR results demonstrated genome specific expression of five genes in sympathy with array results. Here we provide information of each individual genome specific transcripts and it will we a useful data to study complex wheat genome compositions.
Wheat-rye translocation lines were developed to produce a main crop resistant to biological and physical stress. 'Chaupon' rye contains 2RL chromatin to harbor resistance genes for powdery mildew and leaf rust. In order to identify chromosome 2RL-derived rye proteins and 2RL-perturbed proteins in wheat-rye translocation lines, the gel-based proteomics was employed with 'Coker797' (non-2RL), 'Hamlet' (2RL) and 'near-isogenic line' (stabilized 2RL). The leaf proteome was resolved on 2D-gel, resulting in 216 spots in a final selection. A total of 90 proteins were identified with the identification success rate of 42%. The identified proteins were classified by functional annotation: metabolism (64%), cellular process (5%), translation (2%), regulatory function (1%) and hypothetical (28%). The proteins belonged to metabolism were subdivided into carbohydrate metabolism (36%), energy metabolism (35%), metabolism of lipid, amino acid, other amino acid and biosynthesis of secondary metabolites (each 6%) and others (5%). A total of 53 proteins were differentially expressed, in which β-glucosidase, in particular, originated from the chromosome 2RL of rye, was exclusively appeared in NIL. In addition, small Ras-related GTP binding-protein assigned to wheat was predominantly found in 2RL rye chromatin-possessing NIL. These results suggest that the acquired genetic traits obtained from rye 2RL enhance the resistance to biotic and abiotic stress in wheat-rye translocation lines by altered the proteome expression. In leaf metabolome analysis, 11 predominant metabolites containing trans-aconitate, glutamate, and betaine were identified by 1H-NMR-based metabolite fingerprinting. The overall metabolites pattern of NIH appears to be closer to Coker797 rather than Hamlet. Thus, the metabolic phenotype of NIL was not so much lineated from Hamlet contrast to proteomic phenotyping.
Rye (Secale cereale L.) chromatins have been used to introduce agronomically important traits into wheat (Triticum aestivum L.). Wheat-rye translocations in the form of 1RS.1AL, 1RS.1BL, 2BS.2RL have been developed for an important genetic source of disease and pest resistance. The long arm of rye chromosome 2 (2RL) has valuable genes that confer resistance to pests such as biotype L of Hessian fly, powdery mildew, leaf and stem rust. Here, we report the generation and analysis of expressed sequence tags from Hessian fly infested wheat-rye translocation. RNAs were isolated from young seedlings infested by Hessian fly. cDNA library was constructed using Clontech cDNA library construction kit. Random sequencing of candidate clones were performed. The EST clones might be useful to clone target gene sequences and would provide clues on molecular interaction between wheat and Hessian fly.
The wheat-rye translocation lines have been agriculturally developed for the resistance to the biotypes of Hessian fly as a major insect pest of wheat. In order to compare the proteomic profiles between ‘Coker797’ (non-2RL), ‘Hamlet’ (2RL), and near-isogenic line (NIL) carrying 2RL, we evaluated the protein extraction and preparation methods for two-dimensional gel electrophoresis approach. The tissues such as leaves, stems, and roots from three wheat-rye lines were extracted by following trichloroacetic acid (TCA)/acetone precipitation. In a preliminary proteome analysis, a commonly expressed protein in Hamlet and NIL strain was identified as methionine synthase annotated in Hordeum vulgare subsp. The present study will provide the experimental guideline for the proteomic study of other useful crop plant tissues.
Hamlet (PI549276) possessing 2RL was obtained by cross between a wheat cultivar ND7532 (Froid/Centurk) and a rye cultivar Chaupon. Chaupon was known to have resistant gene to biotype L of Hessian fly [Mayetiola destructor (Say)] larvae. The wheat-rye translocation line (Coker797*4/Hamlet) was also known to be resistant to biotype L of Hessian fly larvae. We analysed a set of 96 ESTs from the wheat-rye translocation line (2BS/2RL). ESTs were classified by various physiological processings, such as primary metabolism, secondary metabolism, transcription, translation, transport, signal transduction, defense, transposable element, and others. Three sequences encoding thioredoxin peroxidase, 26S rRNA, and rubisco small subunits were homologous to registered genes in rye. Although limited number of clones were used to develop ESTs, these clones and their sequence information may be useful for researchers studying general physiology and molecular biology on the translocation line.
Seed storage proteins have been used for studying biochemical genetics and end-use quality aspects. We conducted enzyme-linked immunosorbent assay (ELISA) and one-dimensional SDS-PAGE (1D SDS-PAGE) to evaluate different cereal crop species and Korean wheat lines for rye secalin proteins. The antisecalin antibody showed consistent specificity for rye secalin with little cross-reactivity to gliadins. Immunological cross-reactivities measured by the ELISA technique using competition assay showed significant differences of absorbance among rye, triticale, wheat-rye translocated wheat and non-translocated wheat. The absorbance values were lowest in rye followed by triticale, translocated wheat and non-translocated wheat. The ELISA for discrimination of wheat-rye translocation on the basis of antigen-antibody reactivity showed that none of the Korean wheat lines possessed 1RS and secalin proteins. The competitive ELISA experiment demonstrated specific determination for secalin that was originated from rye chromosomal parts. The result of 1D SDS-PAGE for identifying rye secalin subunits showed all three rye specific secalin protein subunits (75 KDa, 45 KDa, and 40 KDa) for rye and triticale, and 1RS specific secalins (45 KDa and 40 KDa) for 1AL/1RS and 1BL/1RS translocated wheats. All Korean wheats were lacking 1RS of rye chromosome and secalin