White rot fungus Cerrena unicolor IUM 5400 produced ethanol from diverse sugars, including glucose, mannose, galactose, and cellobiose at 0.38, 0.28, 0.08, and 0.27 g of ethanol per g of sugar consumed, respectively. The fungus produced relatively high amounts of ethanol from xylose (0.28 g of ethanol per g of sugar consumed); however, the ethanol conversion rate of arabinose was relatively low (at 0.08 g of ethanol per g sugar consumed). When cultured in a basal medium containing 20 g/L rice straw or corn stalks, C. unicolor IUM 5400 produced 0.18 g and 0.18 g of ethanol per g of rice straw and corn stalks, respectively. The results suggest that C. unicolor IUM 5400 is a white rot fungus that can effectively hydrolyze cellulose or hemicellulose to sugars and simultaneously convert them to ethanol.
Pleurotus eryngii, a white rot fungus, produces two extracellular lignin-degrading enzymes, laccase and manganese peroxidase (MnP). Owing to these enzymes, P. eryngii efficiently degrades synthetic chemicals such as azo, phthalocyanine, and triphenyl methane dyes. In this study, we investigated the degradation processes of four aromatic dyes, congo red (CR), methylene blue (MB), crystal violet (CV), and malachite green (MG), by P. eryngii under solid and liquid culture conditions. CR and MG were the most quickly degraded under solid and liquid culture conditions, respectively. However, compared to CR, CV, and MG, MB was not degraded well under both culture conditions. The activities of ligninolytic enzymes (laccase and MnP) were also investigated. Laccase was identified to be the major enzyme for dye degradation. A positive relationship between decolorization and enzyme activity was observed for CR, MB, and CV degradation. In contrast, decolorization of MG ensued after high enzyme activity. These results indicate that the degradation process differs between MG and the other aromatic dyes. Therefore, P. eryngii could be a potential tool for the bioremediation of synthetic aromatic dye effluent.
구름버섯(Trametes versicolor)은 phenolic compound인 CV와 MG를 효과적으로 탈색할 수 있었으며 고체와 액체배양 상태 모두에서 CV보다 MG를 더 효과적으로 탈색시켰다. 구름버섯에 의한 두 색소의 탈색 과정에서 phenolic compounds를 분해하는 것으로 알려진 세 가지 효소 중 laccase의 활성이 가장 높았다. MnP 역시 적은 수치지만 활성을 나타냈으며 LiP의 활성은 나타나지 않았다. 따라서 구름버섯에 의한 합성염료의 분해과정에서 laccase가 주로 사용되고 MnP는 탈색과정에서 보조적인 작용을 하는 것으로 추정된다. 그러나 CV의 경우 MnP가 활발하게 염료분해에 관여하는 것으로 판단된다. 또한 MG가 대부분 탈색되었을 때의 laccase 활성(0.16 U/mg)이 CV가 대부분 탈색되었을 때의 활성(0.23 U/mg)보다 현저하게 낮은 것으로 보아 구름버섯이 CV를 탈색시키는데 더 높은 활성의 laccase가 필요로 하는 것이 밝혀졌다. 본 실험에서 한국산 구름버섯 종의 CV와 MG 탈색능력이 확인되었으며 앞으로 한국산 구름버섯을 이용한 triphenyl methane계에 속하는 합성염료의 분해에 관한 친환경적 처리기술 개발에 도움이 될 것으로 기대된다.
Spent coffee grounds, activated sludge, chicken manure, and agricultural waste-derived biochar were used to manufacture eco-friendly and functional compost via the bioaugmentation of white rot fungus and plant growth that promotes beneficial microorganisms. Six lab-scale composting reactors were established to perform composting. After composting was completed over 45 days, the composts were analyzed for major elements, physico-chemical characteristics, compost maturity, and compost effectiveness on crop growth and quality. Concentrations of T-N and PO4 3− significantly increased in the composts that had been amended with biochar and/or white rot fungus compared to the control, while those of NO3 −-N, TOC and TOC/T-N had significantly decreased, indicating the occurrence of effective composting. Besides, the germination indices of these composts were also generally higher than the control by 10-34%, indicating that the composts were mature. The four composts amended with biochar and/or white rot fungus (TR-3, TR- 4, TR-5, TR-6) also appeared to stimulate more growth in lettuce compared to commercial organic fertilizers (by 36- 104%). Besides, composts TR-3 and TR-4 respectively enhanced DPPH scavenging activity in lettuce leaves by 58% and 49%, while TR-4 and TR-5 respectively enhanced the total phenolic content (TPC) by 44% and 37%. This implies that the amendment of biochar and the bioaugmentation of white rot fungus could facilitate the composting process for the production of quality functional compost that is able to enhance the antioxidant content in crops. Quality composts could better compete with the commercially available fertilizers in the market, leading to the eco-friendly recycling of organic wastes such as spent coffee grounds, sludge, chicken manure, and agricultural waste.
Decolorization of congo red, rhodamine B was investigated by the white rot fungus Irpex lacteus which has biodegrading capability of various recalcitrants. White rot fungus Irpex lacteus is immobilized by PVA-freezing method. An immobilized Irpex lacteus decolorizes 91% of congo red in 8 days under culture with glucose 2%(initial conc.). It also showed 70% of decolorization at 3 days in the state of putting MnSO4 1mM.
But, rhodamine B has no significant differences about decolorization among different mixture ratio of Irpex lacteus with PVA, concentration of carbon, nitrogen and manganese sulfate.