검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        본 연구의 목적은 2023년 4월 충청남도 홍성군 대형산불피해지를 대상으로 산불로 인한 온실가스 배출량을 산정하여 국가 온실가스 인벤토리 고도화에 기여하고자 한다. 산불로 인한 온실가스 배출량은 2006년 IPCC 가이드라인에 따라 산정하였으며, 산정 인자인 연소면적은 Sentinel-2A 위성영상 기반의 differenced Normalized Burn Ratio (dNBR)을 활용하여 제작한 산불피해등급도를 이용하였고 지표층 및 수관층의 연료량 및 연소효율은 현장자료를 바탕으로 추정하였다. dNBR을 활용하여 제작한 산불피해등급도를 기반으로 산정한 온실가스 배출량은 약 19,336.9톤으로, 국립산림과학원 자료를 이용한 결과보다 약 4.0% 증가한 것으로 나타났다. 본 연구는 현장자료를 반영하여 산불로 인한 온실가스 배출량을 보다 정밀하게 산정한 데 의의가 있다. 향후에는 국내 생태계 특성을 반영한 각 요소별 고유 지표의 도입이 요구된다.
        4,000원
        2.
        2017.10 구독 인증기관·개인회원 무료
        Wildfire is one of important disturbances in forests, which may effect on insects distribution. In Sangju, about 13 haof pine forests was burned in March, 2017. We investigated the response of insects to fire severity in burned pine forests,Sangju. Study area was classified by fire severity as 5 classes, such as unburned, light, light-moderate, moderate-severe,and severe. We placed 4 multi-funnel traps in each fire severity class. A total of 729 insects belonging to 42 specieswere collected during May 24 to October 12, 2017. Spondylis buprestoides (447 individuals), Sipalinus gigas (50 individuals),and Acanthocinus carinulatus (43 individuals) were dominant species accounted for 74.1% of total. According to fire severity,abundance and species richness were increased with fire severity, especially in high-medium area. Interestingly, two Monochamusspecies, vector insects of pine wood nematodes, were more caught in more severed area than in other classes.
        3.
        2020.09 KCI 등재 서비스 종료(열람 제한)
        The increased frequency and intensity of wildfires can cause damages to the ecosystem and the atmospheric environment. Rapid identification of the wildfire damages is also important for establishing forest restoration, budget planning, and human resources allocation. Because the wildfires need to be examined for vast areas, satellite remote sensing has been adopted as an effective method. Many studies for the detection of wildfires and the analysis of burn severity have been conducted using mid- and high-resolution images. However, they had difficulties in the sensitivity problem of NBR (Normalized Burn Ratio) for multi-temporal images. This paper describes the feasibility of the detection and classification of wildfire burn severity using Sentinel-2 images with K-means and ISODATA (Iterative Self-Organizing Data Analysis Techniques Algorithm) methods for a case of the Andong fire in April 2020. The result can be a reference to the appropriate classification of large-scale wildfire severity and decision-making for forest restoration planning.