본 연구에서는 한국의 겨울철 강수량이 음()과 양(+)의 극값으로 각각 관측된 2021/2022년과 2023/2024년 사 례를 중심으로, 북극 성층권부터 열대 태평양까지 이어지는 전구 규모 대기 변동이 동아시아 대륙-북서 태평양을 거쳐 중국 동부-황해-한국 지역 대류권 하층 강수 발생 메커니즘에 어떻게 작용하는지를 규명하였다. 1991-2024년 동안 한국 겨울철 강수량은 연평균 0.55±0.80 mm yr1 , 강수일수는 0.04±0.08 day yr1로 증가하였으나, 2021/2022년에는 74.9 mm, 2023/2024년에는 +150.1 mm의 극단적 아노말리가 발생했다. 2021/2022년 겨울에는 북극 성층권 냉각으로 강한 극소용 돌이가 발달해 중위도 대류권 상층이 온난해졌으나, 티벳 고원의 눈 덮임으로 형성된 한랭 고기압이 중국 동부-황해-한 국에 북서풍을 강화하고 수증기 발산을 유도함으로써 강수량이 크게 줄었다. 반면 2023/2024년 겨울에는 성층권 돌연 승온과 엘니뇨가 겹쳐, 서태평양-남동아시아 해역 해수면 온도가 양(+) 편차를 보이는 가운데 온난 고기압이 대류권 하 층 남서풍을 강화해 수증기 수렴과 구름 생성을 촉진하여 극단적인 강수량 증가로 이어졌다. 결국 북극-열대 태평양 간 그리고 동아시아 대륙-북서 태평양 간 외부 요인이 내부 요인들과 복합적으로 작용해 한국 겨울철 강수량 극값 변동을 유발함이 확인되었으며, 이는 겨울 몬순 기후 예측 및 이해에 중요한 단서를 제공한다.
고창 표준기상관측소(Gochang Standard Weather Observatory, GSWO)에서 3년간(2014-2016년) 관측한 겨울철 강수량 자료를 사용하여 겨울철 관측환경에 따른 강수량 관측 특성을 분석하였다. 이를 위해, 설치환경이 다른 강수량 계 4종인 NS(No Shield), SA(Single Alter), DFIR(Double Fence Intercomparison Reference), PG(Pit Gauge)를 사용하여, DFIR을 기준으로 누적 강수량 차이, 강수 유형별 특성, 풍속 변화에 따른 수집효율을 분석하였다. 강수 유형은 고창 종관기상관측장비(Automated Synoptic Observing System, ASOS)의 기온 관측 자료를 사용하여 강우, 혼합 강수, 강설로 분류하여 분석하였다. 겨울철 누적 강수량은 SA, NS, PG 순으로 DFIR과 유사하게 나타났으며, 통계 분석 결과에서는 SA가 DFIR과 가장 유사한 결과를 보였다. 결과적으로, 겨울철 강수량 관측에서는 SA가 기준 강수량계와 가장 유사하게 관측되었으며, PG는 겨울철 관측에 적합하지 않은 것으로 분석된다.
겨울철 동해안 강수 현상에 대한 규명을 위하여 라디오존데를 활용한 특별관측을 2012년 1월 5일부터 2월 29일까지 실시하였고, 이 연구는 대기의 불안정을 나타내는 다양한 변수를 활용하여 강수 사례의 분석을 수행하였다. 그 결과, 강수가 발생할 때 지표면(1000 hPa)에서 중층(약 750 hPa)까지의 상당온위가 증가하는 것을 볼 수 있었고, 이러한 대기층(1000~750 hPa)은 불안정을 일으키기에 충분한 수준의 수증기를 함유하고 있었다. 대류가용잠재에너지의 시간적인 변화를 살펴본 결과 강수가 발생하였을 때 증가하는 것을 볼 수 있었고, 연직바람쉬어의 경우에서도 대류가용잠재에너지와 마찬가지로 강수 기간 동안 상승하여 일정수준 이상의 값을 유지하는 것을 확인할 수 있었다. 강수에 따른 대기 구조의 상세한 분석을 위하여 지상 원격 탐사 자료와 지상 관측 자료를 활용하여 분석을 수행하였다. 또한 가강수량과 바람벡터를 이용하여 가강수량플럭스를 계산하였다. 가강수량플럭스와 강수량은 북동풍 계열의 바람이 발생하였을 때 높은 관계성을 보였다. 그 결과 동해안영역에서 발생하는 강수 현상에서는 풍계와 같은 역학적인 작용의 이해가 중요한 것으로 판단되었다.
The purpose of this article is analyzing the impacts of climate change on winter chinese cabbage yield in Korea, with employing a panel data regression model. Our results show that there is a negative impacts of high temperature and precipitation amount on winter chinese cabbage yields. Especially high temperature and rainfall in September cause serious damage to winter chinese cabbage yield. According to the reduction schedule on greenhouse gas emission(RCP 4.5 scenario.), winter chinese cabbage yield would be 7.7% lower than it is, for reasons of high temperature and rainfall damages by the end of 21st century.