A number of studies have been conducted to confirm the preventive effect of xylitol on dental caries as a whole or partial alternative to dietary sugars. This study reviewed the oral health effects of xylitol on the prevention mechanism of dental caries, the prevention of dental caries, the inhibition of mother-to-child transmission, and the oral health effects in the elderly based on existing studies on the oral health of xylitol. Carbohydrates and dietary sugars in food are fermented by acid-producing microorganisms in the mouth and produce dental plaque and acid, which cause dental caries. However, most dental decay-causing bacteria cannot produce acids by metabolizing xylitol. Xylitol, stored in cells as a non-metabolizable metabolite by Streptococcus mutans (S. mutans), affects bacterial glucose metabolism and inhibits bacterial growth. Xylitol consumption also reduces the amount of plaque and the population of S. mutans in both plaque and saliva. In addition, xylitol acts in the remineralization process. Xylitol has been confirmed to effectively prevent dental caries, inhibit mother-to-child transmission of MS, prevent dental caries, and increase salivary flow in the elderly. In conclusion, xylitol is an adequate sugar substitute for dental health, from infants to the elderly. For future studies, the researchers recommend reviewing the effects of xylitol on the oral and intestinal microbial environment and the side effects of excessive intake.
Xylitol is well-known to have an anti-caries effect by inhibiting the replication of cariogenic bacteria. In addition, xylitol enhances saliva secretion. However, the precise molecular mechanism of xylitol on saliva secretion is yet to be elucidated. Thus, in this study, we aimed to investigate the stimulatory effect of xylitol on saliva secretion and to further evaluate the involvement of xylitol in muscarinic type 3 receptor (M3R) signaling. For determining these effects, we measured the saliva flow rate following xylitol treatment in healthy individuals and patients with dry mouth. We further tested the effects of xylitol on M3R signaling in human salivary gland (HSG) cells using realtime quantitative reverse-transcriptase polymerase chain reaction, immunoblotting, and immunostaining. Xylitol candy significantly increased the salivary flow rate and intracellular calcium release in HSG cells via the M3R signaling pathway. In addition, the expressions of M3R and aquaporin 5 were induced by xylitol treatment. Lastly, we investigated the distribution of M3R and aquaporin 5 in HSG cells. Xylitol was found to activate M3R, thereby inducing increases in Ca2+ concentration. Stimulation of the muscarinic receptor induced by xylitol activated the internalization of M3R and subsequent trafficking of aquaporin 5. Taken together, these findings suggest a molecular mechanism for secretory effects of xylitol on salivary epithelial cells.
breakdown of tooth-supporting tissues, producing dentition loss. Porphyromonas gingivalis (P. gingivalis), a Gramnegative anaerobic rod, is one of the major pathogens associated with periodontitis. Neutrophils are first line defense cells in the oral cavity that play a significant role in inflammatory response. Xylitol is a known anti-caries agent and has anti-inflammatory effects. In this study, we conducted experiments to evaluate anti-inflammatory effects of xylitol on P. gingivalis infected neutrophils for possible usage in prevention and treatment of periodontal infections. P. gingivalis was intraperitoneally injected and peritoneal lavage was collected for cytokine determination. For in vitro study, neutrophils were collected from mouse peritoneal cells after zymosan injection or bone marrow cells. Neutrophils were stimulated with live P. gingivalis and ELISA was used to determine the effect of xylitol on P. gingivalis induced cytokine production. IL-1β, IL-6, TNF-α concentration and neutrophil population in the peritoneal lavage was increased in P. gingivalis-infected mouse. Peritoneal cells infected with live P. gingivalis revealed significantly increased production of IL-1β, IL-6 and TNF-α at multiplicity of infection of 10. Neutrophils from bone marrow and peritoneal lavage revealed increased production of IL-1β, IL-6 and TNF-α. Xylitol significantly mitigated P. gingivalis induced cytokine production in neutrophils. Findings indicate that xylitol is an anti-inflammatory agent in neutrophils infected with live P. gingivalis, that suggests its use in periodontitis management.
Xylitol is a five-carbon sugar alcohol that inhibits the growth of oral streptococci, including Streptococcus mutans. In this study, we tested xylitol sensitivity among the oral streptococci. We also compared nucleotide homology of putative fructose phosphotransferase system (PTS) and xylitol sensitivity, since xylitol is transported via the fructose PTS. Among the tested Streptococci, S. pneumonia showed the highest resistance to xylitol while S. gordonii and S. sanguinis showed the most sensitive growth inhibition. These streptococci could be grouped according to their xylitol sensitivity. S. mutans and S. salivarius showed similar bacterial growth inhibition by xylitol. S. mitis, S. oralis, S. pneumonia, S. intermedius and S. anginosus showed relatively low sensitivity to xylitol. When the genetic homologies of five fructose PTSs were compared among the tested streptococci, closely related streptococci showed similar sensitivity to xylitol. Taken together, fructose PTSs may mediate the sensitivity to xylitol in oral streptococci.
Xylitol is a five-carbon sugar alcohol that reduces the incidence of caries by inhibiting the growth of oral streptococci, including Streptococcus mutans. Since xylitol is transported via the fructose phosphotransferase system, we hypothesized that it could also affect the growth of other oral bacteria strains. We tested the effects of xylitol against non-periodontopathogenic oral bacteria frequently found in healthy subjects as well as periodontopathogens including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. With 5% xylitol, Streptococcus vestibularis and Gemella morbillorum showed marked growth inhibition. With 10% xylitol, all of the tested periodontopathogens and Actinomyces naeslundii showed marked growth inhibition, whereas the growth inhibition of Neisseria mucosa, Neisseria sicca and Veillonella parvula was mild only. Xylitol is a widely used sweetener and the concentration used in our experiment is easily achieved in the oral cavity. If xylitol reduces the growth of periodontopathogens more preferentially, it could also reduce the prevalence of these pathogens and have clinical utility in the prevention or treatment of periodontal disease.
Xylitol is a sugar alcohol with a variety of functions including bactericidal and anticariogenic effects. However, the cellular mechanisms underlying the role of xylitol in bone metabolism are not yet clarified. In our present study, we exploited the physiological role of xylitol on osteoclast dif-ferentiation in a co-culture system of osteoblastic and RAW 264.7 cells. Xylitol treatment of these co-cultures reduced the number of tartrate-resistant acid phosphatase (TRAP)- positive multinucleated cells induced by 10 nM 1α,25(OH)2 D3 in a dose‐dependent manner. A cell viability test revea-led no marked cellular damage by up to 100 mM of xylitol. Exposure of osteoblastic cells to xylitol decreased RANKL, but not OPG, mRNA expression in the presence of 10-8 M 1α,25(OH)2D3 in a dose‐dependent manner. Furthermore, bone resorption activity, assessed on bone slices in the co- culture system, was found to be dramatically decreased with increasing xylitol concentrations. RANKL and OPG proteins were assayed by ELISA and the soluble RANKL (sRANKL) concentration was decreased with an increased xylitol con-centration. In contrast, OPG was unaltered by any xylitol con-centration in this assay. These results indicate that xylitol inhibits 1α,25(OH)2D3-induced osteoclastogenesis by reducing the sRANKL/OPG expression ratio in osteoblastic cells.
Yackwa was prepared by substituting syrup with xylitol (0, 10, 20, and 30%) and the quality characteristics were evaluated. Volume and specific volume were higher in Yackwa prepared with xylitol than the control. Crude fat content ofxylitol-containing Yackwa were significantly higher than that of control (p<0.05), but moisture content was not different among treatments. Incorporation ofxylitol in Yackwa lowered the redness and yellowness values (p<0.05). Instrumental hardness results showed that the addition of xylitol decreased the hardness ofYackwa. Sensory evaluation revealed no significant difference in overall desirability between controland xylitol-containing groups. Therefore, Yackwa made with up to 30% xylitol in place of syrup is as acceptable as control Yackwa without depressing sensory quality.
a initial setting of mortar containing 0.2% xylitol and 2% sodium phosphate dibasic dodecahydrate was found to become fast. And a initial setting of mortar containing 0.3% xylitol was found to become slow. Also, mortar containing xylitol and PCM can reduce of maximum temperature and increase compressive and tensile strength compared to the plain mortar and mortar containing blast-furnace slag.