This study aimed to investigate the validation and modify the analytical method to determine quercetin- 3-o-gentiobioside and isoquercitrin in Abelmoschus esculentus L. Moench for the standardization of ingredients in development of functional health products. The analytical method was validated based on the ICH (International Conference for Harmonization) guidelines to verify the reliability and validity there of on the specificity, linearity, accuracy, precision, detection limit and quantification limit. For the HPLC analysis method, the peak retention time of the index component of the standard solution and the peak retention time of the index component of A. esculentus L. Moench powder sample were consistent with the spectra thereof, confirming the specificity. The calibration curves of quercetin-3-o-gentiobioside and isoquercitrin showed a linearity with a near-one correlation coefficient (0.9999 and 0.9999), indicating the high suitability thereof for the analysis. A. esculentus L. Moench powder sample of a known concentration were prepared with low, medium, and high concentrations of standard substances and were calculated for the precision and accuracy. The precision of quercetin-3-o-gentiobioside and isoquercitrin was confirmed for intraday and daily. As a result, the intra-day precision was found to be 0.50-1.48% and 0.77-2.87%, and the daily precision to be 0.07-3.37% and 0.58-1.37%, implying an excellent precision at level below 5%. As a result of accuracy measurement, the intra-day accuracy of quercetin-3-o-gentiobioside and isoquercitrin was found to be 104.87-109.64% and the daily accuracy thereof was found to be 106.85-109.06%, reflecting high level of accuracy. The detection limits of quercetin-3-o-gentiobioside and isoquercitrin were 0.24 μg/mL and 0.16 μg/mL, respectively, whereas the quantitation limits were 0.71 μg/mL and 0.49 μg/mL, confirming that detection was valid at the low concentrations as well. From the analysis, the established analytical method was proven to be excellent with high level of results from the verification on the specificity, linearity, precision, accuracy, detection limit and quantitation limit thereof. In addition, as a result of analyzing the content of A. esculentus L. Moench powder samples using a validated analytical method, quercetin-3-o-gentiobioside was analyzed to contain 1.49±0.01 mg/dry weight g, while isoquercitrin contained 1.39±0.01 mg/dry weight g. The study was conducted to verify that the simultaneous analysis on quercetin-3-o-gentiobioside and isoquercitrin, the indicators of A. esculentus L. Moench, is a scientifically reliable and suitable analytical method.
Known for its effectiveness in weight loss and diabetes prevention, Gymnema sylvestre products can be found in the US, Japanese, and Indian markets. However, the recommended dosage or safety of these products has not yet been proven. Therefore, development of an analytical method for detecting the content of Gymnema sylvestre in food products is required. Accordingly, this study proposes an analysis method that can examine Gymnema sylvestre in food using LC-ESI-MS/MS and KASP (Kompetitive Allele-Specific PCR) markers. In LC-ESI-MS/MS, a simultaneous analysis method for gymnemic acid and deacylgymnemic acid was optimized using negative ionization mode, and its validation test was completed for solid and liquid samples. In addition, KASP markers were prepared by finding the specific SNP of G. sylvestre in ITS2 and matK through DNA barcodes. The two KASP markers returned positive FAM fluorescence result when combined with G. sylvestre, and this aspect was confirmed in raw G. sylvestre as well. The applicability of the method was tested on 21 different food and healthy functional products containing G. sylvestre purchased on the internet. As a result, although there was a difference in the ratios of gymnemic acid and deacylgymnemic acid in LC-ESI-MS/MS, the index component was detected in all 21 products samples. In the KASP analysis, 9 products returned positive FAM result, and the rest of the products were found to be containing G. sylvestre extract. This study is the first study to use the dual system of LC-ESI-MS/MS and KASP for the analysis of G. sylvestre. The study has confirmed that these two methods are applicable to the examine G. sylvestre content in food products.
The bacterial soft-rot disease is one of the most critical diseases in vegetables such as Chinese cabbage. The researchers isolated two bacteria (Pseudomonas kribbensis and Pantoea vagans) from diseased tissue samples of Chinese cabbages and confirmed them as being the strains that cause soft-rot disease. Lactic-acid bacteria (LAB), were screened and used to control soft-rot disease bacteria. The researchers tested the treatments with hypochlorous acid water (HAW) and LAB supernatant to control soft-rot disease bacteria. The tests confirmed that treatments with the HAW (over 120 ppm) or LAB (Lactobacillus plantarum PL203) culture supernatants (0.5 mL) completely controlled both P. kribbensis and P. vagans.
The purpose of this study is to investigate the distribution of toxin genes and antimicrobial resistance of Vibrio parahaemolyticus isolated from seafood in Gwangju. A total of 335 seafood, including 163 shellfish, 97 fish, and 36 mollusk, were tested in this study. As a result, V. parahaemolyticus was detected in 123 (36.7%) of 335 seafood. The tdh gene was not detected in all strains, while the trh gene was detected in 3 strains (2.4%). According to antimicrobial susceptibility test, 116 strains (94.3%) represent resistance to ampicillin, and 1 strain (0.8%) represents resistance to trimethoprim/sulfametoxazole. However, all strains were sensitive to 9 antimicrobial agents, including amikacin, chloramphenicol, tetracycline, and more. Therefore, the risk of V. parahaemolyticus isolated from seafood in Gwangju is considered low, but continuous monitoring of V. parahaemolyticus in seafood is required.
The purpose of this study is to monitor the pesticide residues in frozen fruits and vegetables distributed and sold in online and offline markets in Korea. For the study, 107 samples of 34 types of frozen fruits and vegetables were examined, and a total of 341 pesticide residues were analyzed by using multiclass pesticide multiresidue methods of the Korean Food Code. As a result, pesticide residues were detected from 16 of 64 frozen fruits samples and 15 of 43 frozen vegetables samples. Conclusively, residues were detected from 31 samples in total, showing a detection rate of 29.0%. Specifically, pyridaben exceeded the Maximum Residue Limits (MRLs) based on the Positive list system (PLS) in one of the frozen radish leaves, and the violation rate was 0.9%. Detection on frozen fruits and vegetables was made 23 times for 11 types and 36 times for 21 types. In total, 28 types of pesticide residues were detected 59 times. Fungicides were detected the most in frozen fruits, while insecticides were detected the most in frozen vegetables. The most detected pesticides were the insecticide, acaricide chlorfenapyr (5) and the fungicide boscalid (5). Chlorfenapyr was detected only in frozen vegetables, and boscalid was detected in frozen fruits except one.
The purpose of this study was to examine the microbiological and physicochemical changes on packaged tofu stored at temperatures of 5, 13, 23, and 30oC, and measure the consumable period from the expiry date to ultimately evaluate the microbiological safety on the extension of the consumable period. From the investigation, the pH value of tofu at each storage temperature (5, 13, and 23oC) showed a slight decrease over the storage period, although there was no significant change. The hardness of packaged tofu decreased more rapidly as temperature and storage time increased and the tofu started to show signs of decomposition at the same time. Analysis on the microbial change of tofu at different storage temperature revealed that the number of general bacteria also increased as the temperature increased. It was further found that packaged tofu takes 25 days at 5oC, 7 days at 13oC, and 1 day at 23oC from the expiry date until the general bacteria count is at least at the early decomposition level which is 10oC log CFU/g. However, no coliform bacteria was detected from tofu after storing at 5, 13 and 23oC. When packaged tofu was stored at 5oC, the L value changed significantly after 26 days, whereas the a and b values showed no significant change during the storage period (P>0.05). When storing tofu at 13oC and 23oC the L value decreased after 8 and 3 days, respectively. However, both a and b values increased (P<0.05).
Recently, the purchase of fresh-cut produce and meal kits has increased. Ready-to-eat (RTE) fresh-cut products have potentially hazard of cross-contamination of various microorganisms in the processes of peeling, slicing, dicing, and shredding. There are frequent cases of protozoa food poisoning, such as Cyclospora and Cryptosporidium, caused by fresh-cut products. The objective of the study is to investigate the microbiological qualities of various types of RTE fresh-cut products in the domestic on/offline markets. RTE fresh-cut fruits cup (n=100), fresh-cut vegetables (n=50), and vegetables in meal kits (Vietnamese spring rolls and white radish rolls kits, n=50) were seasonally analyzed. The contamination levels of hygienic indicator organisms, yeast and mold (YM), and foodborne pathogens (Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Salmonella spp., and Escherichia coli O157:H7) were monitored. Overall, the lowest microbiological qualities of meal kits vegetables were observed, followed by RTE fresh-cut fruits cup and fresh-cut vegetables. Contamination levels of total aerobic bacteria, coliforms, and YM in meal kits vegetables were 5.91, 3.90, and 4.71 logs CFU/g, respectively. From the qualitative analysis, 6 out of 200 RTE fresh-cut products (3%) returned positive result for S. aureus. From the quantitative analysis, the contamination levels of S. aureus in purple cabbage from a meal-kit and fresh-cut pineapple were below the acceptable limit (100 CFU/g). Staphylococcus enterotoxin seg and sei genes were detected in RTE fresh-cut celery and red cabbage from meal-kits, respectively. S. aureus contamination must be carefully controlled during the manufacturing processes of RTE fresh-cut products. Neither Cyclospora cayetanensis nor Cryptosporidium parvum was detected in the samples of RTE fresh-cut products and vegetables from meal-kits from the Korean retail markets.
Listeria monocytogenes (L. monocytogenes) is one of gram-positive foodborne pathogens with a very high fatality rate. Unlike most foodborne pathogens, L. monocytogenes is capable of growing at low temperatures, such as in refrigerated foods. Thus, various physical and chemical prevention methods are used in the manufacturing, processing and distribution of food. However, there are limitations to the methods such as possible changes to the food quality and the consumer awareness of synthetic preservatives. Thus, the aim of this study was to evaluate the anti-listeria activity of lactic acid bacteria (LAB) isolated from kimchi and characterize the bacteriocin produced by Lactococcus lactis which is one of isolated strains from kimchi. The analysis on the anti-listeria activity of a total of 36 species (Lactobacillus, Weissella, Lactobacillus, and Lactococcus) isolated from kimchi by the agar overlay method revealed that L. lactis NJ 1-10 and NJ 1-16 had the highest anti-listeria activity. For quantitatively analysis on the anti-listeria activity, NJ 1-10 and NJ 1-16 were co-cultured with L. monocytogenes in Brain Heat Infusion (BHI) broth, respectively. As a result, L. monocytogenes was reduced by 3.0 log CFU/mL in 20 h, lowering the number of bacteria to below the detection limit. Both LAB strains showed anti-listeria activity against 24 serotypes of L. monocytogenes, although the sizes of clear zone was slightly different. No clear zone was observed when the supernatants of both LAB cultures were treated with proteinase- K, indicating that their anti-listerial activities might be due to the production of bacteriocins. Heat stability of the partially purified bacteriocins of NJ 1-10 and NJ 1-16 was relatively stable at 60oC and 80oC. Yet, their anti-listeria activities were completely lost by 60 min of treatment at 100oC and 15 min of treatment at 121oC. The analysis on the pH stability showed that their anti-listeria activities were the most stable at pH 4.01, and decreased with the increasing pH value, yet, was not completely lost. Partially purified bacteriocins showed relatively stable anti-listeria activities in acetone, ethanol, and methanol, but their activities were reduced after chloroform treatment, yet was not completely lost. Conclusively, this study revealed that the bacteriocins produced by NJ 1-10 and NJ 1-16 effectively reduced L. monocytogenes, and that they were relatively stable against heat, pH, and organic solvents, therefore implying their potential as a natural antibacterial substance for controlling L. monocytogenes in food.
A number of studies have been conducted to confirm the preventive effect of xylitol on dental caries as a whole or partial alternative to dietary sugars. This study reviewed the oral health effects of xylitol on the prevention mechanism of dental caries, the prevention of dental caries, the inhibition of mother-to-child transmission, and the oral health effects in the elderly based on existing studies on the oral health of xylitol. Carbohydrates and dietary sugars in food are fermented by acid-producing microorganisms in the mouth and produce dental plaque and acid, which cause dental caries. However, most dental decay-causing bacteria cannot produce acids by metabolizing xylitol. Xylitol, stored in cells as a non-metabolizable metabolite by Streptococcus mutans (S. mutans), affects bacterial glucose metabolism and inhibits bacterial growth. Xylitol consumption also reduces the amount of plaque and the population of S. mutans in both plaque and saliva. In addition, xylitol acts in the remineralization process. Xylitol has been confirmed to effectively prevent dental caries, inhibit mother-to-child transmission of MS, prevent dental caries, and increase salivary flow in the elderly. In conclusion, xylitol is an adequate sugar substitute for dental health, from infants to the elderly. For future studies, the researchers recommend reviewing the effects of xylitol on the oral and intestinal microbial environment and the side effects of excessive intake.
In this study, a comparative dissolution experiment was conducted between an immediate-release and a controlled-release vitamin C tablet applied with a technology to control the dissolution of vitamin C to maintain the vitamin C level in the human body. In order to confirm the dissolution rate (%) of vitamin C tablets, HPLC determination was conducted based on the dissolution test methods in the ‘Korean Pharmacopoeia (No. 2020-88),’ ‘Guidelines on Specifications of Dissolution Tests for Oral dosage Forms,’ and ‘Standard and Specifications for Health Functional Foods (No. 2020-63)’ from Ministry of Food and Drug Safety (MFDS). In addition, the dissolution pattern between the immediate-release tablet and the controlled-release tablet was comparatively analyzed. The analysis result confirmed that the immediate-release vitamin C tablet was 100% dissolved after 45 minutes, while the controlled- release vitamin C tablet was 100% dissolved after 480 minutes (8 hours). Furthermore, the dissolution rate (%) at 60 minutes was slower than that of the immediate-release vitamin C tablet. Based on these results, this study confirmed that the dissolution rate (%) test and development of controlled-release tablets containing vitamin C as the main component a re possible.