Antimicrobials in human medicine are classified by The World Health Organization (WHO) into three groups: critically important antimicrobials (CIA), highly important antimicrobials (HIA), and important antimicrobials (IA). CIA are antibiotic classes that satisfy two main criteria: that they are the sole or the only available limited therapeutic option to effectively treat severe bacterial infections in humans (Criterion 1), and infections where bacteria are transmitted to humans from non-human sources or have the potential to acquire resistance genes from non-human sources (Criterion 2). WHO emphasizes the need for cautious and responsible use of the CIA to mitigate risk and safeguard human health. Specific antimicrobials within the CIA with a high priority for management are reclassified as “highest priority critically important antimicrobials (HP-CIA)” and include the 3rd generation of cephalosporins and the next generation of macrolides, quinolones, glycopeptides, and polymyxins. The CIA list is the scientific basis for risk assessment and risk management policies that warrant using antimicrobials to reduce antimicrobial resistance in several countries. In addition, the CIA list ensures food safety in the food industry, including for the popular food chain companies McDonald's and KFC. The continuous update of the CIA list reflects the advancement in research and emerging future challenges. Thus, active and deliberate evaluation of antimicrobial resistance and the construction of a list that reflects the specific circumstances of a country are essential to safeguarding food security.
To analyze the pesticide residues in commercial bee pollen products in South Korea, 61 samples were collected and screened for 339 pesticides. Results revealed that approximately 34% (>LOQ) of samples were contaminated with at least one pesticide. The pesticide residue detection rates of domestic and imported samples were 31% and 44%, respectively. Furthermore, the pesticide residue detection rate of online distribution (60%) was higher than that of offline distribution (27%). Fifteen pesticides were discovered in bee pollen, and pendimethalin, chlorfenvinphos, chlorpyrifos, and fluazinam were detected in 7, 6, 3, and 2 order of frequency, respectively. Even though its concentration was low, chlorfenvinphos which is banned in food crops in the United States, European Union, and Korea, was detected in bee pollen samples commonly. Therefore, continuous investigation of pesticide residues in bee pollen products and their acceptance criteria is required for safety.
A total of 100 commercially available olive oil products were analyzed for 179 pesticide residues using gas chromatography-tandem mass spectrometry (GC/MS/MS). The olive oil samples were mixed with organic solvents, centrifuged and frozen to remove fat, and pesticide residues were analyzed using the “quick, easy, cheap, effective, rugged, and safe” (QuEChERS) method. The determination coefficient (R2) of the analysis method used in this study was ≥0.998. The detection limit of the method ranged 0.004–0.006 mg/kg and its quantitative limit ranged 0.012–0.017 mg/kg. The recovery rate (n=5) measured at the level ranging 0.01–0.02, 0.1, and 0.5 mg/kg ranged 66.8– 119.5%. The relative standard deviation (RSD) was determined to be ≤5.7%, confirming that this method was suitable for the "Guidelines for Standard Procedures for Preparing Food Test Methods". The results showed that a total of 151 pesticides (including difenoconazole, deltamethrin, oxyfluorfen, kresoxim-methyl, phosmet, pyrimethanil, tebuconazole, and trifloxystrobin) were detected in 64 of the 100 olive oil products. The detection range of these pesticide residues was 0.01–0.30 mg/kg. The percentage acceptable daily intake (%ADI) of the pesticides calculated using ADI and estimated daily intake (EDI) was 0.0001–0.1346, indicating that the detected pesticides were present at safe levels. This study provides basic data for securing the safety of olive oil products by monitoring pesticide residues in commercially available oilve oil products. Collectively, the analysis method used in this study can be used as a method to analyze residual pesticides in edible oils.
The consumption of ready-to-eat side dishes is rapidly growing in South Korea. These foods are particularly vulnerable to microbiological contamination as they are often cooked without any treatment, such as heating or stored at room temperature after cooking. Hence, in 2022, we analyzed the ready-to-eat side dishes sold in Gyeongsangnam-do, South Korea for microbiological contamination. We collected 100 samples from supermarkets in 7 cities, and then examined them for presence of food-borne pathogens and sanitary indicator bacteria. In the analysis of the food-borne pathogens, Bacillus cereus and Clostridium perfringens were isolated from 51 samples (51.0%) and 3 samples (3.0%), respectively. However, both quantitatively met the Korean Food Standards Codex. Genes of five different enterotoxins and one emetic toxin were analyzed from the 51 isolated B. cereus strains. We detected enterotoxin entFM (100.0%), nheA (94.1%), hblC (58.8%), cytK (56.9%), and bceT (41.2%) in 51 isolates, and emetic toxin gene, CER, in only one (2.0%) isolate. We did not detect C. perfringens toxin gene (cpe) that causes food poisoning in any one of the three C. perfringens isolates. In the case of sanitary indicator bacteria, Kimchi had the highest levels of total aerobic bacteria and coliforms, followed by Saengchae, Jeotgal, Jeolim, Namul, and Jorim, respectively. We counted total aerobic bacteria at two different storage temperatures (4oC and 20oC) to determine the effect of storage temperature. When stored at 20oC, total aerobic bacteria count increased in most of the ready-to-eat side dishes, except for Jeotgal. This result conclusively shows the need for refrigerating the ready-to-eat side dishes after purchase. Further research is needed to assess the risk and safety of the ready-to-eat side dishes available in the market and determine appropriate safety management practices.
Peanut is a well-known food allergen that causes adverse reactions ranging from mild urticaria to life-threatening anaphylaxis. Consumers suffering from peanut allergies should thus avoid consuming undeclared peanuts in processed foods. Therefore, effective cleaning methods are needed to remove food allergens from manufacturing facilities. To address this, wet cleaning methods with washing water at different temperatures, abstergents (peracetic acid, sodium bicarbonate, dilute sodium hypochlorite, detergent), and cleaning tools (brush, sponge, paper towel, and cotton) were investigated to remove peanuts from materials used in food manufacture, including plastics, wood, glass, and stainless steel. Peanut butter was coated on the surface of the glass, wood, stainless steel, and plastic for 30 min and cleaned using wet cleaning. The peanut residue on the cleaned surfaces was swabbed and determined using an optimized enzyme-linked immunosorbent assay (ELISA). Cleaning using a brush and hot water above 50oC showed an effective reduction of peanut residue from the surface. However, removing peanuts from wooden surfaces was complicated. These results provide information for selecting appropriate materials in food manufacturing facilities and cleaning methods to remove food allergens. Additionally, the cleaning methods developed in this study can be applied to further research on removing other food allergens.
In this study, the quality safety limit period of seven types of bakery bread was analyzed, and their use-by date was calculated. For evaluating product quality, storage conditions were set as 5, 15, 25, and 35oC for 50 days, and moisture, microorganisms, sensory characteristics, and dominant bacteria were examined. The quality and safety standards followed the Korea Food Code and Korean industrial standards (KS). The results showed that all products stored at 5oC satisfied the standard for bacterial count for day 50, but the sensory quality was below the standard level. Samples stored at 15oC showed high variability from 3–39 days. At 25oC, a quality safety limit period of 2–20 days was set, and one sample was found to have the same shelf life. Bread stored at 35 °C had the shortest quality safety limit period. Considering a safety factor of 0.87, a use-by date period of 1.7–13.1 days was calculated. Therefore, setting the use-by date according to the product type is necessary, even for the same product category. Among the bread products sold in bakeries, those managed as room temperature products (1–35oC) can be distributed and stored in a temperature range of up to 35oC. Overall, this study demonstrates the importance of setting a quality retention period based on the product characteristics and carefully considering the safety factor.
V. parahaemolyticus causes waterborne and foodborne disease such as acute diarrhea. In this study, V. parahaemolyticus isolates from seawater, fish tanks, and distributed fishery products in Jeju were investigated for potential toxin or species-specific genes (tdh, trh, tlh, and toxR) using RT-PCR and their genetic characteristics were analyzed using Pulsed-field gel electrophoresis (PFGE). Overall, V. parahaemolyticus of 90 strains (36.7%), including 33 strains from seawater, 8 strains from fish tanks, and 50 strains from fishery products, were isolated from 245 samples. All V. parahaemolyticus strains did not detect the tdh gene, whereas all strains detected tlh or toxR genes. In addition, trh genes were detected in 3 strains from seawater and 1 strain from fishery products. Monthly quantitative testing of seawater revealed that V. parahaemolyticus was positively correlated with water temperature. The 90 strains of V. parahemolyticus obtained in this study showed by gene homology between types, ranging from 64.0–97.3%. Among these, thirteen types showed 100% homology between genes. These results indicate that continuous monitoring is needed to facilitate food poisoning epidemiological investigations because some isolated V. parahaemolyticus strains harbored toxin genes and V. parahaemolyticus strains isolated from seawater, fish tanks, and distributed fishery products showed genetic similarity.
The standards for heavy metal levels in crustaceans are 0.5 mg/kg and 1.0 mg/kg or lower for lead and cadmium, respectively. Further, the contamination levels of arsenic, mercury, methyl mercury, and tin are being continuously investigated, considering their current exposure levels. Shrimps are potentially exposed to heavy metals because they inhabit areas with abundant organic matter, such as sandy or muddy shores, places with a lot of seaweed, and estuaries. This study measured the monetary value of reducing consumer anxiety and increasing consumer confidence if the government prohibits the sale of shrimp species that exceed the threshold for specific heavy metals and of the top shrimp species for which no threshold for heavy metals is specified. We derived consumer willingness-topay (WTP). Combining the estimated WTP with the number of households in the country, the total value of benefits was estimated to be 363.9 billion won. The results of this study will provide an important empirical finding, showing to what extent specific policies regarding heavy metals in seafood can alleviate consumer anxiety and provide psychological reassurance.
The aim of this study was to compare the antioxidant activities and functional contents of Korean conventional and Chinese seed gingers from the Jeollabuk-do Wanju and Chungcheongnam-do Seosan regions. Ginger samples were subjected to steaming treatments for different durations (2–8 h) at 121oC using an autoclave. The antioxidant activity was evaluated by measuring total polyphenol and flavonoid contents and ABTS and DPPH radical scavenging activities, while functional ingredient contents were analyzed for gingerols and shogaols. The results showed that Wanju conventional seed ginger (WO-2) had the highest total polyphenol (85.24 mg GAE/g) and flavonoid (98.14 RE/100 g) contents, surpassing that of the control in all steamed groups at 6 h. ABTS radical scavenging activity showed a strong correlation with total polyphenol and flavonoid contents. The control groups indicated that Korean conventional seed ginger had 1.0–1.3 times higher gingerol contents compared to Chinese seed ginger. Furthermore, the content of shogaols, considered major functional ingredients, increased significantly with longer steaming durations, reaching the highest content (1,793 mg/kg) at 8 h, which was 1.0–1.8 times higher in Korean conventional seed ginger than that in Chinese seed ginger. These experiments provide valuable data supporting the excellence of Korean conventional seed ginger in the future.
This study aimed to predict the shelf life of black soybean Sunsik to develop a functional labeling system for the product. The Arrhenius equation was used to calculate the shelf life by examining alterations in the dietary fiber and calcium levels of black soybean Sunsik stored at 25, 35, and 50°C for 0, 6, and 12 months. Dietary fiber and calcium analyses were performed according to the experimental methods specified in the Food Code of the Ministry of Food and Drug Safety. Both black soybean Sunsik (BS) and black soybean Sunsik containing nondigestible maltodextrin and calcium lactate (BSN) exhibited an upward trend in dietary fiber content after 12 months of storage, compared to their initial levels. During storage, the phytate in Sunsik degraded, releasing cations that facilitated the formation of new cross-links between pectic acid and middle lamella, which ultimately increased dietary fiber content. Conversely, the calcium contents of both BS and BSN decreased with prolonged storage. Based on these findings, the expected shelf life of BS and BSN was calculated as 15.65 and 28.34 months, respectively.