리튬-이온 전지 기술의 발전과 함께 다량의 리튬 사용에 따라 리튬-이온 전지에 대한 수요와 공급의 균형이 무너지고 있으며, 따라서 리튬을 대체할 수 있는 차세대 이차 전지의 개발이 필요해지고 있다. 최근 친환경적이며, 값싸며 안전 하고, 다가의 전자를 활용할 수 있는 아연 이온을 활용하는 수계 아연-이온 전지가 주목받고 있다. 그럼에도 불구하 고 아연-이온 전지에 사용될 수 있는 전류 집전체에 대한 개발 연구는 거의 없으며, 특히 현재 사용되고 있는 금속 기반의 전류 집전체는 그 무게가 무거워 실용적으로 사용되기 힘들다. 본 연구에서는 접착 특성이 매우 우수한 키틴 바인더를 사용하여 집전체 없이 지탱이 가능한 전극을 개발하였으며 아연-이온 전지에서의 그 특성을 평가하였다. 전 극 제조는 전통적인 코팅법과 스핀 코팅법을 사용하여 비교하였으며, 스핀 코팅이 더 균일한 전극 형성과 함께 더 우 수한 배터리 성능을 나타냄을 확인하였다.
One of the promising supercapacitors for next-generation energy storage is zinc-ion hybrid supercapacitors. For the anode materials of the hybrid supercapacitors, three-dimensional (3D) graphene frameworks are promising electrode materials for electrochemical capacitors due to their intrinsic interconnectivity, excellent electrical conductivity, and high specific surface area. However, the traditional route by which 3D graphene frameworks are synthesized is energy- and time-intensive and difficult to apply on a large scale due to environmental risks. Here, we describe a simple, economical, and scalable method of fabricating grafoil (GF) directly into a graphite–graphene architecture. Both synthesizing of a porous structure and functionalization with interconnected graphene sheets can be simultaneously achieved using electrochemically modified graphite. The resultant graphite electrode provides a high capacitance of 140 mF/cm2 at 1 mA/cm2, 3.5 times higher than that of pristine grafoil, keeping 60.1% of its capacitance when the current density increases from 1 to 10 mA/cm2. Thus, the method to produce 3D graphene-based electrodes introduced in the current study is promising for the applications of energy storage devices.
단일 이온원을 사용하는 이온빔 스퍼터링법을 이용하여 Mn-Zn페라이트 박막을 증착하였다. 기판은 1000Å의 산화막이 입혀진 실리콘 웨이퍼를 사용하고 타깃은 (110)Mn-Zn 페라이트 단결정위에 Fe 금속선을 부착한 모자이크 타깃을 사용하엿다. 산소의 유입없이 성장된 박막은 금속선으로부터 스퍼터링된 금속이온들에 의해 상대적인 산소결핍을 나타내어 Wustite 구조를 가졌으며, 이를 해결하기 위해 기판주위로 산소를 유입시켜 증착시킨 결과(111) 우선배향성을 가지는 스피넬 페라이트 상의 박막을 얻을 수 있었다.박막의 성장속도는 이온빔 인출전압, 이온빔 입사각이 증가할수록 감소하였고, 기판과 타깃과의 거리가 멀어질수록 감소하였다. 낮은 이온빔 인출전압에서는 인출전압의 증가에 따라서 박막의 결정화가 향상되었지만, 매우 높은 인출전압에서는 이차이온의 에너지가 너무 높아 박막에 손상을 가하게 되므로 인출전압이 증가할수록 박막의 결정화는 오히려 저하되었다. 스피넬 구조를 가지는 페라이트 박막들은 페리자성을 나타내었으며 박막면에 평행한 방향으로 자화용이축을 가졌다.