The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
The cultivation methods of Acanthopanax in Korea need to be optimized. Hence, this study investigated the effect of different fertilizer ratios and planting dates on the growth and acanthoside D content of two (2) Acanthopanax species. The current recommended fertilizer rate of 10.5-8.5-8.5 kg/ha- (N-P2O5-K2O, respectively) produced the best plant growth of Acanthopanax. For the first year, the acanthoside D content resulting from the 2P (2x phosphate) rate was higher than that from the other fertilizer ratios, yet there were no significant differences resulting from the various treatments for either Acanthopanax divaricatus or Acanthopanax koreanum. Similarly, for the second year, there were no significant differences in the acanthoside D content resulting from the various fertilizer ratios, although for both species the acanthoside D content resulting from the 2P rate was slightly higher than that from the other treatments. Therefore, the results indicated that doubling the amount of phosphate increased the acanthoside D content. Plus, the optimum planting date with respect to growth and productivity for Acanthopanax divaricatus was identified as April 15.
This study was conducted to identify the effect of shading and pinching on growth and acanthoside-D content of Acanthopanax divaricatus var. albeofructus and A. koreanum Nakai. Different pinching heights showed no significant differences in terms of plant growth and acanthoside-D content but higher values showed that pinching A. divaricatus at 60 cm and A. koreanum at 30 cm favored good growth and higher fresh weight in the shoots. The content of acanthoside-D was not significantly affected by pinching heights. Also, no significant difference in acanthoside-D content was found between the lower and upper part of plant in the first year. However it was much higher in the lower part than the upper part in the second year, which indicated that the content of acanthoside-D was comparatively high in the lower part where lignification is much advanced. Shading showed benefits in terms of growth of A. divaricatus while only 50%-shading was favorable for A. koreanum to achieve superior growth. Overall, results indicated that shading had favorably affected the growth of the 2 Acanthopanax species while no-shading is better if we opt to achieve higher acathoside D content.