PURPOSES : In this study, the factors affecting the severity of traffic accidents in highway tunnel sections were analyzed. The main lines of the highway and tunnel sections were compared, and factors affecting the severity of accidents were derived for each tunnel section, such as the tunnel access zone and tunnel inner zone.
METHODS : An ordered probit model (OPM) was employed to estimate the factors affecting accident severity. The accident grade, which indicates the severity of highway traffic accidents, was set as the dependent variable. In addition, human, environmental, road condition, accident, and tunnel factors were collected and set as independent variables of the model. Marginal effects were examined to analyze how the derived influential factors affected the severity of each accident.
RESULTS : As a result of the OPM analysis, accident factors were found to be influential in increasing the seriousness of the accident in all sections. Environmental factors, road conditions, and accident factors were identified as the main influential factors in the tunnel access zone. In contrast, accident and tunnel factors in the tunnel inner zone were found to be the influencing factors. In particular, it was found that serious accidents (A, B) occurred in all sections when a rollover accident occurred.
CONCLUSIONS : This study confirmed that the influencing factors and the probability of accident occurrence differed between the tunnel access zone and inner zone. Most importantly, when the vehicle was overturned after the accident occurred, the results of the influencing factors were different. Therefore, the results can be used as a reference for establishing safety management strategies for tunnels or underground roads.
PURPOSES : This study deals with Rotary by Accident Occurrence Location. The purpose of this study is to develop the accident models of rotary by location. METHODS : In pursuing the above, this study gives particular attentions to developing the appropriate models using multiple linear, Poisson and negative binomial regression models and statistical analysis tools. RESULTS : First, four multiple linear regression models which are statistically significant(their R2 values are 0.781, 0.300, 0.784 and 0.644 respectively) are developed, and four Poisson regression models which are statistically significant(their σ2 values are 0.407, 0.306, 0.378 and 0.366 respectively) are developed. Second, the test results of fitness using RMSE, %RMSE, MPB and MAD show that Poisson regression model in the case of circulatory roadway, pedestrian crossing and others and multiple linear regression model in the case of entry/exit sections are appropriate to the given data. Finally, the common variable that affects to the accident is adopted to be traffic volume. CONCLUSIONS : 8 models which are all statistically significant are developed, and the common and specific variables that are related to the models are derived.