검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2012.06 구독 인증기관·개인회원 무료
        The aim of this study was to examine the effect of acteoside (the cyclin-dependent kinase inhibitor) on the SCNT efficiency with adult fibroblasts in dog. Canine adult fibroblasts were obtained from muscle and cell cycle of fibroblasts was synchronized by culturing to confluency, serum starvation and treating with 30 μM acteoside for 48 h. Cell cycle stages, cell cytotoxicity (apoptosis) and, prduction of reactive oxygen species (ROS) were analyzed using flow cytometry. The canine cells, prepared by confluent-cell culture or treating with 30 μM acteoside for 48 h, were injected into enucleated in vivo matured oocytes, the couplets were electrical fused and activated by calcium ionomycin. SCNT embryos using acteoside-treated fibroblasts were surgically transferred into oviducts of estrus cycle synchronized recipient dogs. In cell cycle synchronization (G0/G1), there was no significant difference between serum starvations (83.9%) and acteoside treated groups (81.3%) that were higher than confluent group (78.5%). In production of apoptosis, confluent and acteoside treated groups (4.3 and 4.5%, respectively) were generated less than serum starvation group (21.8%). In case of ROS, serum starvation group was induced a significantly higher than other groups. After synchronization of the donor cell cycle, either confluent or acteoside treated, cells were placed with enucleated in vivo-matured dog oocytes, fused by electric stimulation, activated, and transferred into naturally estrus-synchronized surrogates. Fusion and cleavage rate of acteoside treated group were 64.1 and 41.5%, which were higher than those of confluent group (53.9 and 20.6%, respectively). The reconstructed embryo development rates to 4-cell and 8-cell in acteoside treated group were 29.5 and 14.8%, respectively, while confluent group showed 11.1 and 3.2%, respectively. Total 54 SCNT embryos using acteoside-treated fibroblasts were transferred into oviducts of 2 recipient dogs and one recipient finally delivered one puppy, whereas din`t detected pregnancy on transfer of cloned embryos reconstructed with confluent cells in 6 surrogate dogs. In conclusion, the results of the current study demonstrated that canine fibroblasts could be successfully arrested at the G0/G1 stage with reduced the formation of ROS and apoptosis after acteoside treatment. This results may contribute to improve the effi-ciency of canine SCNT. * This research was supported by iPET (Grants 110056-3), Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.
        2.
        2012.06 구독 인증기관·개인회원 무료
        Acteoside acts as an anti-oxidative activity and anti-apoptosis in the cells. But, it has been not studied on maturation and development of porcine oocytes. The aims of the present study were to examine the effects of acteoside on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. Oocytes were matured in tissue culture medium-199, supplemented with acteoside at various concentrations: 0 (control), 10, 30 and 50 μM. The oocytes maturation rates of groups supplemented with acteoside were no significantly different (81.13, 85.96, 82.95 and 83.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (44.83 vs. 27.75%). And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. In the results. during IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with control oocytes. And reverse transcription polymerase chain reaction (RTPCR) of parthenogenetic blstocysts revealed that acteoside increased the anti-apoptotic genes (Mcl-1, Bcl-2 and Bcl-xL), whereas reduced the expression of pro-apoptotic genes (Bax and Bak). In conclusion, based on the results, the effect of acteoside on IVM was not attractive. However, in acteoside treated group, cytoplasmic maturation seemed to be improved with morphologically uniform distribution of cytoplasmic organelles. Furthermore, embryonic development in acteoside treated group was significantly highly increased than that of non-treated group. Our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes, providing a improved method for porcine oocytes in vitro. * This work was supported by a grant (Code# PJ008148) from BioGreen21 Program, Rural Development Administration, Republic of Korea.
        3.
        2011.10 구독 인증기관·개인회원 무료
        Acteoside (verbascoside) is a typical phenylethanoid glycoside, extracted from various plants. It has various biological functions such as anti-oxidant, anti-inflammation, and anti-hypertension. Specially, it was powerful anti-oxidants either by direct scavenging of reactive oxygen and nitrogen species, or by acting as chain-breaking peroxyl radical scavengers. We examined the role of acteoside in IVM medium on the morphological progress of meiosis, developmental competence, and ROS in porcine oocytes. And we investigated effect of acteoside on the oocytes condition represented by cytoplasmic maturation by homogeneous distribution and formation of cytoplasmic organelles and regulation of apoptosis-related genes. The selected COCs were cultured in TCM-199 with various concentration of acteoside: 0 (control), 10, 30, and 50 μM. After 22 h of maturation with hormones, the oocytes were washed twice in a fresh maturation medium before being cultured in hormone-free medium for additional 22 h. The oocytes maturation rates of supplemented with acteoside were no significantly different compared with control group (71.13, 75.96, 72.95 and 73.68%, respectively). Level of ROS was significantly decreased in acteoside treated group. Furthermore, the parthenogenetic blastocyst rate was significantly improved in 10 μM acteoside treated group compared with control group (40.03 vs. 22.95%). During IVM, 10 μM acteoside treated oocytes showed that the mitochondria and lipid droplet were smaller and homogeneous distribution in cytoplasm compare with non-treated control oocytes. And reverse transcription polymerase chain reaction (RT-PCR) witarthenogenetic blstocysts revealed that acteoside increased the anti-apoptoticgenes, otherwise reibued pro-apoptotic genes. In conclusion, our results represents that addition of acteoside to the IVM medium has a beneficial effect in physiology of porcine oocytes such as viability and activation, providing a improved method for porcine oocytes in vitro.