검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2025.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, a response model of a beam structure was established through finite element analysis by analyzing the vibration response to external excitation. The vibration control performance of the beam was then evaluated by applying the narrow-band Fx-LMS algorithm for active structural control. The transfer function was obtained at the error sensor location when the structure was excited and the three-axis actuator was operated. The performance of the active control was investigated with 18 channels for error input and actuator output. When the equipment is exciting, the response of the error sensor is the primary path, and when the inertial 3-axis actuator operates, the response of the error sensor position is the secondary path, and the Fx-LMS algorithm is applied. The simulation was performed by changing the control parameters so that the response of the error sensor can satisfy the target performance. From the results of this study, the acceleration results over time showed about 70% vibration reduction after active control, and the average error value of the error sensor also decreased by about 68%. In addition, it was confirmed that real-time control of a system with 18 sensors and 18 actuators is possible even if the secondary path is configured in two orders.
        4,000원
        2.
        2002.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        구조물의 고유진동수가 너무 밀집되어 있거나 특성방정식의 부호가 영을 지나지 않고 갑자기 무한대가 되는 등의 불연속성이 존재하는 주파수 대역에 속해있는 고유진동수를 단순히 근을 찾는 수치해석 알고리듬만을 이용하여 모두 찾아내어 계산한다는 것은 그다지 쉬운 일이 아니다. 따라서, 본 연구에서는 이러한 문제점을 극복할 수 있는 휘트릭-월리엄즈 알고리듬을 탄성재층과 압전소자재층의 두개의 층이 적층되어 구성된 능동보의 스펙트럴요소모델에 대하여 유도하였다 유도된 알고리듬은 균일적층 능동보와 부분적층 능동보의 두 경우에 적용하여 그 결과를 평가하였다.
        4,200원
        3.
        2013.04 서비스 종료(열람 제한)
        In this paper, the utilization of PZT’s dual piezoelectric effects (i.e., dynamic strain and electro-mechanical (E/M) impedance responses) for damage detection in beam-type structures are presented. In order to achieve the objective, the following approaches are implemented. First, global vibration-based and local impedance-based methods to detect the location of damage are presented. Then, the vibration-based and impedance-based damage detection methods using the dual piezoelectric responses are evaluated from experiments on a lab-scaled beam.