화석연료 사용이 증가하면서 온실가스 및 대기오염가스 등의 환경오염 문제가 심각해졌다. 이를 해결하기 위한 신재생에너지, 친환경적인 대체에너지원을 찾기 위한 많은 연구가 이뤄지고 있다. 연료전지는 전기에너지를 발생하며 부산물로 물만이 생성되는 친환경 에너지 발생장치다. 특히, 전해질로 음이온 교환막을 사용하는 음이온 교환막 연료전지(Anion Exchange Membrane Fuel Cell)는 높은 촉매의 활성으로 양이온 교환막 연료전지(Proton Exchange Membrane Fuel cell)와 다르게 저가의 금속 촉매를 사용할 수 있는 장점 때문에 관심이 높아지고 있다. 음이온 교환막으로써 요구되는 주요 특성은 높은 이온(OH-) 전도도 및 높은 pH의 구동조건에서의 안정성이다. 본 연구에서는 PPO계 고분자의 화학적 가교 반응을 이용해 얻어진 가교형 고분자 막의 낮은 기계적인 특성과 치수 안정성을 높이기 위해 보다 높은 분자량을 갖는 고분자 사용과 함께 가교율 증대를 통해 보다 높은 이온 전도도와 기계적인 성질, 높은 화학적인 안정성뿐만 아니라 실제 연료전지 구동조건에서 높은 셀 성능을 갖는 AEMFC용 고분자 전해질 막을 개발했다.
Anion exchange membrane (AEM) with fixed charged cationic groups can selectively transport anionic molecules such as hydroxide anions. The AEM materials have been widely used in the wide range of applications such as polymer electrolyte fuel cells, water electrolysis, and reverse electrodialysis and electrodialysis. Commercially available AEM materials show high electrochemical resistance owing to their chemical architectural features leading to less separated hydrocarbon morphologies. Very low solubility to casting solvents and weak chemical durability to alkaline atmosphere of the AEM materials also makes it difficult to make thin and tough AEM membranes. In this study, AEM materials composed of perfluorinated architectures with improved chemical durability and intrinsically well separated morphologies were developed and evaluated.
Alkaline direct liquid fuel cells (ADLFCs) employing anion-exchange membranes as a fuel barrier have attracted significant attention as promising alternative energy sources. ADLFCs are allowed to use more abundant anode catalysts which are cheaper than the catalyst used in that using hydrogen fuel. In this work, novel pore-filled anion-exchange membranes (PFAEMs) were successfully fabricated by combining a highly porous poly(tetrafluoroethylene) film and cationic polyelectrolytes with structurally stable anion-exchange sites. The results of the membrane characterizations revealed that the optimization in the crosslinking degree and hydrophilicity of membranes should be considered for the successful application of the PFAEMs to ADLFCs. (KETEP)(20153030031720) and (MOTIE) (No. 10047796).