A sundry system is one of popular systems for composting livestock manure, of which main honest is to utilize unlimited, clean, and free solar radiation. A sundry system with a composter of two horizontal screw-type concrete ducts at different height, was constructed and operated for three days for each test in May, 1993, to evaluate its composting performance. Four treatments of the mixture ratio of swine manure and saw dust (manure : sawdust= 1 : 1.25, 1 : 1, 1 : 0.7, 1 : 0.5) were implemented to evaluate the effect of the mixture ratio on degradation of the composting materials of a sundry system with a screw-type composter. Maximum temperature of the composting materials was over 50℃ at D1 or D2 (one or two days after operation starts) for each test. Mean C/N ratio and water contents of the materials were reduced by more than 15 and 20%, respectively. Microbial density of each test showed a typical variation with the lapse of the composting time. Mesophilic microorganism seemed to play more important role on degradation of the materials than thermophilic. A sundry system with a screw-type composter can be considered as a feasible system on basis of maturity data. The conclusion was completely reverse from that of Choi et at., although both adopted a sundry system. A further study is recommended to pursue the cause of better performance of the screw-type composter, whether it was due to affirmative weather or more efficient composter.
Recent research has demonstrated that treating poultry litter with alum (aluminum sulfate) and aluminum chloride can remove environmental threats (ammonia, soluble phosphorus and odor) posed by litter. However, scientific information available on heavy metal in poultry litter with liquid aluminum chloride is still lacked. The purpose of this study was to investigate the effects of applying liquid aluminum chloride to rice hulls on heavy metals and to provide basic information to producers. Six hundred 0-d-old broiler were assigned to 4 treatments (control, 100 g, 200 g and 300 g of liquid AlCl3/kg of rice hulls, respectively) with 3 replicates of 50 birds. The experimental period lasted for 6 weeks. Liquid AlCl3 was sprayed on the rice hulls surface using a small hand pump. Total Al contents increased (P<0.05) with the increasing levels of liquid AlCl3 levels over time in comparison with control groups. Total Cu and Pb were lowered in all liquid AlCl3 treatments compared with the controls during 6 weeks. Significant differences in all treatments were found for total Cu contents at 2, 3 and 5 weeks and total Pb at 0, 1, 2 and 3 weeks. Total Zn contents decreased with time when compared with controls. However, no significant differences in total Zn contents were observed among all treatments. In light of environmental managements, spraying liquid AlCl3 to rice hulls indicated the significant advantages in reducing heavy metals as well as improving poultry industrial competitiveness.