검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 68

        62.
        2004.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Final disposal of radioactive waste generated from Nuclear Power Plant (NPP) requires the detailed information about the characteristics and the quantities of radionuclides in waste package. Most of these radionuclides are difficult to measure and expensive to assay. Thus it is suggested to the indirect method by which the concentration of the Difficult-to-Measure (DTM) nuclide is estimated using the correlations of concentration - it is called the scaling factor - between Easy-to-Measure (Key) nuclides and DTM nuclides with the measured concentration of the Key nuclide. In general, the scaling factor is determined by the log mean average (LMA) method and the regression method. However, these methods are inadequate to apply to fission product nuclides and some activation product nuclides such as 14 and 90 . In this study, the artificial neural network (ANN) method is suggested to improve the conventional SF determination methods - the LMA method and the regression method. The root mean squared errors (RMSE) of the ANN models are compared with those of the conventional SF determination models for 14 and 90 in two parts divided by a training part and a validation part. The SF determination models are arranged in the order of RMSEs as the following order: ANN model
        64.
        2002.11 KCI 등재 서비스 종료(열람 제한)
        In this study, a real-time simulation method for the phenomena, which are too complex to be simulated during real-time computer games, was proposed based on the neural network. The procedure of proposed method is to 1) obtain correlation data between input parameters and output parameters by mathematical modeling, code analyses, and so on, 2) train the neural network with the correlation data, 3) and insert the trained neural network in a game program as a simulation module. For the case that the number of the input and output parameters is too high to be analyzed, a method was proposed to omit parameters of little importance. The method was successfully applied to severe accidents of nuclear power plants, reflecting that the method was very effective in real time simulation of complex phenomena.
        65.
        2002.03 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to evaluate the artificial neural network algorithm for water quality forecasting in Chungju lake, north Chungcheong province. Multi-layer perceptron(MLP) was used to train artificial neural networks. MLP was composed of one input layer, two hidden layers and one output layer. Transfer functions of the hidden layer were sigmoid and linear function. The number of node in the hidden layer was decided by trial and error method. It showed that appropriate node number in the hidden layer is 10 for pH training, 15 for DO and BOD, respectively. Reliability index was used to verify for the forecasting power. Considering some outlying data, artificial neural network fitted well between actual water quality data and computed data by artificial neural networks.
        66.
        2000.12 KCI 등재 서비스 종료(열람 제한)
        This study aims at the development of the model for a forecasting of water quality in river basins using artificial neural network technique. Water quality by Artificial Neural Network Model forecasted and compared with observed values at the Sangju 1 and Dalsung stations in Nakdong river basin. For it, a multi-layer neural network was constructed to forecast river water quality. The neural network learns continuous-valued input and output data. Input data was selected as BOD, DO, discharge and precipitation. As a result, it showed that method Ⅲ of three methods was suitable more than other methods by statistical test(ME, MSE, Bias and VER). Therefore, it showed that Artificial Neural Network Model was suitable for forecasting river water quality.
        68.
        1998.02 KCI 등재 서비스 종료(열람 제한)
        신경회로망은 어떤 사상에 대한 인과관계를 연상기억능력을 통하여 인식할 수 있는 기능을 가지고 있을 뿐 아니라 비선형현상에 대한 적응능력이 뛰어나 수문계의 강우-유출 현상에 대한 적용가능성은 많으나 이를 수문학적으로 검증하는데는 아직 검토단계라 할 수 있으며 적용에 따른 방법론에 대한 연구가 필요하다 할 수있다. 본 연구에서는 하천유역에서 호우의 발생에 따른 하천의 홍수유출수문곡선을 모의하기 위한 블랙박스모형으로서 신경회로망이론의 적용에 따른 문제를 수문
        1 2 3 4