한반도 남해안 지역의 여름철 대기 안정도 특성을 분석함으로써, 한반도 특성에 맞는 강수 예측을 위한 대기 안정도 지수의 정량적인 임계값을 도출하고자 하였다. 보성 표준기상관측소에서 관측한 2019년도 여름철 라디오존데 집중관측자료를 분석에 사용하였으며, 총 관측자료는 243개이다. 강수 유무 및 중규모 대기 현상에 대한 대기 안정도를 분석하기 위해서, 대류가용잠재에너지(Convective Available Potential Energy, CAPE)와 폭풍지수(Storm Relative Helicity, SRH)를 비교하였으며 특히 SRH 분석은 고도별로 총 4개의 층으로(0-1, 0-3, 0-6, 0-10 km) 세분화하였다. 강수 유무에 따른 분석은 강수가 없는 경우, 강수발생 전 12시간, 강수 발생 시로 구분하여 수행하였다. 그 결과, 2019년도 보성에서 발생한 여름철 강수 예측에는 CAPE 보다 SRH가 더 적합하며 0-6 km SRH가 약한 토네이도가 발생 가능한 기준과 같은 150 m 2 s−2 이상일 경우 강수가 발생한 것으로 분석 된다. 또한, 장마와 태풍 기간의 대기 안정도를 분석한 결과를 보면, 일반적으로 SRH는 대기 깊이가 두꺼워질수록 값이 커지는데 반해서 0-10 km SRH 평균값 보다 0-6 km 의 SRH 값이 더 크게 나타났다. 따라서, 2019년도 보성에서 발생한 태풍에 의한 강수를 판별하는 데는 0-6 km 의 SRH 값이 더 효과적이라고 할 수 있다.
Odor dispersion from road emissions were investigated using CFD (Computational Fluid Dynamics). The Shear Stress Transport k-ω model in FLUENT CFD code was used to simulate odor dispersion around the road. The two road configurations used in the study were at-grade and fill road. Experimental data from the wind tunnel obtained in a previous study was used to validate the numerical result of the road dispersion. Five validation metrics are used to obtain an overall and quantitative evaluation of the performance of Shear Stress Transport k-ω models: the fractional bias (FB), the geometric mean bias (MG), the normalized mean square error (NMSE), the geometric variance (VG), and the fraction of predictions within a factor of two of observations (FAC2). The results of the vertical concentration profile for neutral atmospheric show reasonable performance for all five metrics. Six atmospheric stability conditions were used to evaluate the stability effect of road emission dispersion. It was found that the stability category D case of at-grade decreased the non-dimensional surface odor concentration smaller 0.78~0.93 times than those of stability category A case, and that F case decreased 0.39~0.56 times smaller than those of stability category A case. It was also found that stability category D case of filled road decreased 0.84~0.92 times the non-dimensional surface odor concentration of category A case and stability category F case decreased 0.45~0.58 times compared with stability category A case.
Atmospheric stability is an important parameter which effects pollutant dispersion in the atmospheric boundary layer.The objective of this paper was to verify the effect of stability conditions on odor dispersion downwind from anarea source using computational fluid dynamic (CFD) modeling. The FLUENT Realizable k-ε model was used tosimulate odor dispersion as released by an odor source. A total of 3 simulations demonstrated the effects of unstable,neutral, and stable atmospheric conditions. Unstable atmospheric stability conditions produced a shorter odor plumelength compared with neutral and stable conditions because of stronger convective effects. Like other studies,unstable atmospheric condition produced higher plume height compared with neutral and stable conditions.
실제 대기경계층 내에 놓인 언덕 지형 주위 유동은 단순 모델을 적용한 풍동 실험이나 수치해석 결과와 는 큰 차이가 발생한다. 승학산은 풍향각에 따른 협곡, 매우 가파른 언덕 및 급격한 언덕을 지나는 유동의 후류 특성 등에 대한 여러 가지 지형적 특징을 지니고 있다. 이와 같은 유동 특성을 분석하기 위해 50m 높이의 기상 타워를 설치하여 30m, 40m, 50m 에서의 풍속 및 풍향을 각각 10분 평균으로 측정하였다. 경계층 풍속 분포 측정 결과, 급격한 언덕을 가진 풍향각에서는 큰 구배를 가지는 풍속 분포가 측정되었다. 특정 풍향각에 대하여 난류강도 분포가 협곡과 가파른 언덕에서 큰 값을 관찰할 수 있었으며, 프로파일 법으로 계산된 표면조도 역시 지형적인 특성으로 인한 경계층 풍속 분포를 효과적으로 나타내었다. 반면 시간적으로 분류된 대기안정성이 유동에 끼치는 영향은 복잡한 지형적 특성으로 인해 열유동 현상이 크게 나타나지 않는 것을 확인할 수 있었다.
Successful launch requires state-of-the-art launch vehicle technology and constant test operations, However, the meteorological threat to the launch vehicle flight trajectory is also an important factor for launch success. Atmospheric stability above the Naro Space Center at the this time is very important, especially because the initial flight operation can determine the success of the launch. Moreover, during the flight of launch vehicle with rapid pressure and thrust into the atmosphere, convection activity in the atmosphere may create environmental conditions that cause severe weather threats such as thunderstorms. Hence, studies of atmospheric instability characteristics over the Naro Space Center are a necessary part of successful launch missions. Therefore, the main aims of this study were to (1) verify the atmospheric stability index and convection activity characteristics over the Naro Space Center using radiosonde data observed from 2007 to 2018 by the Naro Space Center, (2) analyze changes in the atmospheric stability index according to monthly and seasonal changes, and (3) assess how the calculated atmospheric stability index is related to actual thunderstorm occurrence using statistical analysis. Additionally, we aimed to investigate the atmospheric characteristics above the Naro Space Center through the distribution chart of the atmospheric stability index during summer, when convection activity is highest. Finally, we assessed the relationship between lightning occurrence and unstable atmospheric conditions, through predictability analysis performed using the lightning observation data of the Korea Meteorological Administration.
To predict annual energy production (AEP) accurately in the wind farm where located in Seongsan, Jeju Island, Equivalent wind speed (EQ) which can consider vertical wind shear well than Hub height wind speed (HB) is calculated. AEP is produced by CFD model WindSim from National wind resource map. EQ shows a tendency to be underestimated about 2.7% (0.21 m/s) than HB. The difference becomes to be large at nighttime when wind shear is large. EQ can be also affected by atmospheric stability so that is classified by wind shear exponent (). AEP is increased by 11% when atmosphere becomes to be stabilized ( > 0.2) than it is convective ( < 0.1). However, it is found that extreme wind shear ( > 0.3) is hazardous for power generation. This results represent that AEP calculated by EQ can provide improved accuracy to short-term wind power forecast and wind resource assessment.
The physical properties of an atmospheric boundary layer in Wolryong, a west coastal region of Jeju, South Korea, in terms of the atmospheric stability and roughness length, is important and relevant to both engineers and scientists. The study is aiming to understand the atmospheric stability around this region and its effect on the roughness length. We calculate the Monin-Obukhov length(L) against 3 typical regions of the atmospheric condition - unstable regime (-5<H/L<-0.2), neutral regime (-0.2≤H/L≤0.2) and stable regime (0.2<H/L<2), where H is the measurement height. The diurnal Monin-Obukhov length substantially varies in the night, but most of the H/L comes under the neutral regime. The roughness length scale can be derived by three different methods - logarithmic profile, standard deviation and gust factor method. The finding in the study is that the methods of the standard deviation and the gust factor, apart from the logarithmic profile, are all similar in terms of the roughness length under the different atmospheric conditions. In addition, they have sufficiently shown the effect of obstacles and surface conditions around the measurement site.