바이오항공유 제조 공정 내 수첨업그레이딩 공정의 운전조건 선정은 반응물로부터 얻고자 하는 주생성물인 탄화수소 화합물에 대하여 바이오항공유로서 원하는 탄소수 분포의 물성을 갖도록 하기 위한 중요한 인자이다. 본 연구에서는 식물성 오일 유래 노말 파라핀계 탄화수소 화합물에 대한 수첨 업그레이딩 반응이 0.5 wt.% Pt/Zeolite 촉매 하에서 수행되었으며, 이를 통해 크래킹 반응과 이성질화 반응이 동반됨으로써 바이오항공유로서 물성을 갖는 탄소수 분포인 C8-C16에 해당하는 노말 파라핀계와 이소 파라핀계가 혼합된 탄화수소류 화합물이 제조되었다. 반응온도, 반응압력, 반응물 몰비와 공간속도를 변화하여 얻어진 생성물의 수율 및 조성을 분석하였다. 상기 공정 조건에 대한 정보는 수첨 업그레이딩 반응특성의 이해뿐 아니라 향후 증류를 통한 바이오항공유 제조에 도움을 줄 수 있다.
Since the volume based tipping system was adopted for municipal solid wastes in Korea, the system has been well implied with the positive participation of households. Therefor local governments have started to apply the system to food wastes as well in recent years and each household has put an effort to reduce the generation of food wastes consequently. Another big movement on the management of municipal solid waste has been made, which was intending to utilize wastes to energy resources by converting to solid refuse fuel (SRF). In the meantime the conversion of biomass to energy became an issue to argument national renewable energy. Such motivation made an attempt to utilize fruit husks as SRFs since they has been used to dispose of as food wastes with the payment of tipping fee by households. Thus, in this study, five fruits (mandarine, apple, pear, sweet persimmon and grape) of 6 main consuming fruits in Korea were chosen as tested materials to check out any potentials of biomass SRFs. The basic characteristics of 5 fruit husks after drying naturally were analyzed. Heating values, proximate analysis results were reported and thermo-gravimetric tests were made for suggesting them to combustible wastes or bio-SRFs. The higher heating values of all fruit husks with natural drying showed above 3,000 kcal/kg which is the criterium of SRF and the lower heating values were less than SRF standard due to higher content of moisture. Proximate analysis and thermo-gravimetric data were similar to other biomass fuels like wood and municipal solid waste. It is concluded that such fruit husks could be used as SRFs by adopting an effective drying method in advance.