본 연구에서는 영상기반 딥러닝 및 이미지 프로세싱 기법을 이용한 볼트풀림 손상검출 기법을 제안하였다. 이를 위해 먼저, 딥러닝 및 이미지 프로세싱 기반 볼트풀림 검출 기법을 설계하였다. 영상기반 볼트풀림 검출 기법은 볼트 이미지 검출 과정 및 볼트풀림 각도 추정 과정으로 구성된다. 볼트 이미지의 검출을 위하여 RCNN기반 딥러닝 알고리즘을 이용하였다. 영상의 원근왜곡 교정을 위해 호모그래피 개념을 이용하였으며 볼트풀림 각도를 추정을 위하여 Hough 변환을 이용하였다. 다음으로 제안된 기법의 성능을 검증을 위하여 거더의 볼트 연결부 모형을 대상으로 볼트풀림 손상검출 실험을 수행하였다. 다양한 원근 왜곡 조건에 대하여 RCNN 기반 볼트 검출기와 Hough 변환 기반 볼트풀림 각도 추정기의 성능을 검토하였다.
This paper presents a novel bolt-loosening detection technique using image information of bolted connections in the steel bridge. The technique consists of 5 steps: (1) taking a picture for a bolted joint, (2) converting to binary image, (3) extracting individual nuts, (4) extracting outlines of the nuts, and (5) identifying rotation angles of the nuts and detecting bolt-loosening. The applicability of the proposed technique is evaluated by experimental tests with several bolt-loosening scenarios.