검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 51

        21.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Bone marrow (BM) cell harvesting is a crucial element in the isolation of mesenchymal stem cells (MSCs). A simple method for harvesting cat BM cells is described. The results show that a large number of BM cells can rapidly be harvested from the cat by this simple procedure. MSCs prepared by density-gradient method were spindle-shaped morphology with bipolar or polygonal cell bodies and strongly positive for CD9 and CD44 and negative for CD18 and CD45-like. They were capable of differentiation to adipocytic and osteocytic phenotypes when exposed to appropriate induction media. The advantages of this method are its rapidity, simplicity, low invasiveness, and low donor attrition and good outcome.
        4,000원
        25.
        2008.03 구독 인증기관 무료, 개인회원 유료
        Bone marrow mesenchymal stem cells (BMMSCs) have the capacity for self-renewal and differentiation into a variety of cell types. They represent an attractive source of cells for gene and cell therapy. The purpose of this study is to direct the specific expression of the DsRed reporter gene in Sca-1+ BMMSCs differentiated into a cardiomyogenic lineage. We constructed the prMLC-2v-DsRed vector expressing DsRed under the control of the 309 tp fragment of the rat MLC-2v 5'-flanking region. The specific expression of the DsRed reporter gene under the transcriptional control of the 309 bp fragment of the rat MLC-2v promoter was tested in 5-azacytidine healed-Sca-1+ BMMSCs over 2 weeks after the prMLC-2v-DsRed transfection. The prMLC-2v-DsRed was specifically expressed in the Sca-1+ BMMSCs with cardiomyogenic lineage differentiation and it demonstrates that the 309 bp sequences of the rat MLC-2v 5'-flanking region is sufficient to confer cardiac specific expression on a DsRed reporter gene. The cardiac-specific promoter-driven reporter vector provides an important tool for the study of stem cell differentiation and cell replacement therapy in ischemic cardiomyopathy.
        4,000원
        26.
        2008.03 구독 인증기관 무료, 개인회원 유료
        조혈 줄기 세포에의 효과적인 유전자 전달은 유전자 치료의 새로운 가능성을 제시할 수 있다. 레트로바이러스를 이용한 유전자 전달 기술은 많은 기초 연구와 임상 시도가 이루어진 대표적인 바이러스이다. 그러나 현재 사용되고 있는 in vitro에서의 조혈 줄기 세포에의 유전자 도입은 조혈 줄기 세포의 분화 유도, 자기 복제 능력과homing 능력의 저하 등 많은 문제점이 있다. 본 연구는 이러한 문제점을 극복하기 위한 방법으로서 마우스의 대퇴골에 직접 레트로바이러스를 이식하는 IBM (Intra-Bone Marrow) 방법을 이용하여 조혈 줄기 세포에의 효과적인 유전자 도입을 시도하였다. IBM 이식 2주 후 마우스의 각 조직을 분석한 결과, 골수뿐 아니라 림파절, 비장, 간장 세포 등에서 유전자가 안정적으로 발현하는 것을 관찰하였다. 또한, 6.4+-2.7%의 골수조직 존재 조혈줄기/전구세포에서 도입된 유전자가 안정적으로 발현하고 있는 사실을 확인하였다. 본 연구의 결과를 바탕으로 IBM 이식 방법을 이용한 생체 조직 내 레트로바이러스의 유전자 도입은 조혈 줄기 세포를 이용한 유전자 치료에 매우 효과적인 방법이라는 사실을 시사해주고 있다.
        4,000원
        32.
        2007.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Previous ly we have s hown that fï brob last• growth factor-2 (FGF-2) and dexamethasone (Dex) in combination strongly stimulate both p l 이 i fe rati o n a nd differe nt iation of mesenchymal stem cells (MSCs) into osteoblasts and adipocytes, In the present s tudy we invesL igaLed whether inhibition 01' FGF-2 and Dex-induced adipogenic differentiation of bone marrow derived s Lem cells (BMSCs) by GW9662, an antagoni s t of proxisome proliferators-activated receptol γ (PPARy) which plays a key role in ad ipogenic differentiation , enhances proliferation and osteoblastic differentiation of BMSCs Proliferation 01' BMSCs t reated wi 네 FGF-2 a nd Dex was further increased by GW9662 up to 9,7, 10,6, and 7,2% at 3, 5, and 7 days of cul Lu re , Expansion of BMSCs with FGF-2, Dex and GW9662 followed by osteoblastic different iation showed that osteoblas tic differentiation 01' BMSCs was in creased by 37 % (p=O, 01) compared to those expanded with FGF-2 and Dex, ln contrast , ad i pogenic di fferenti a tion of FGF-2 and Dex-expanded BMSCs was substantially reduced to 14% (p=O, 036) by GW9662, Taken toget her , these resul ts demonstrate that FGF-2 and Dex in combination with GW9662 f ur t her stimu late proliferation 01' BMSCs and those cells expanded with these factors acquire enhanced potentiaIs to be dif ferentiated i n to osteoblas ts
        4,000원
        33.
        2006.06 구독 인증기관 무료, 개인회원 유료
        Nitric oxide(NO) is a labile, uncharged, reactive radical that functions as a sensitive mediator of intercellular communication in diverse tissues. It has been reported that NO is produced by osteoblast and these results may suggest that NO is integrally involved in the regulation of osteoclast formation and osteoclast resorption activity by osteoblastic cells. We examined the effect of cytokines on NO release by mouse bone marrow cell. We also examined the effects of cytokines and sodium nitroprusside(SNP) on the formation of osteoclast-like cell from mouse bone marrow cells in culture. Cytokines stimulated NO production of mouse bone marrow cells, and N-nitro-L-arginine methyl ester, a specific inhibitor of NO synthase, suppressed the cytokine-induced NO production. SNP showed dual action in the generation of osteoclasts. The addition of (30μM)SNP inhibited the formation of tartrate resistant acid phosphatase(TRAP)(+) multinucleated cell, whereas lower concentration(30μM) of SNP enhanced it. Although the precise action of NO remains to be elucidated in detail, the action of NO in osteoclast generation in our studies seems to be associated, at least in part, with bone metabolism and bone pathophysiology.
        4,000원
        34.
        2006.06 구독 인증기관 무료, 개인회원 유료
        Calcium concentration in the bone resorption lacunae is high and is in the mM concentration range. Both osteoblast and osteoclast have calcium sensing receptor in the cell surface, suggesting the regulatory role of high extracellular calcium in bone metabolism. In vitro, high extracellular calcium stimulated osteoclastogenesis in coculture of mouse osteoblasts and bone marrow cells. Therefore we examined the genes that were commonly regulated by both high extracellular calcium and 1.25(OH)₂vitaminD₃(VD3) by using mouse oligo 11 K gene chip. In the presence of 10 mM [Ca²+]e or 10 nM VD3, mouse calvarial osteoblasts and bone marrow cells were co-cultured for 4 days when tartrate resistant acid phosphatase-positive multinucleated cells start to appear. Of 11,000 genes examined, the genes commonly regulated both by high extracellular calcium and by VD3 were as follows; 1) the expression of genes which were osteoclast differentiation markers or were associated with osteoclastogenesis were up-regulated both by high extracellular calcium and by VD3; trap, mmp9, car2, ctsk, ckb, atp6b2, tm7sf4, rab7, 2) several chemokine and chemokine receptor genes such as sdf1, scya2, scyb5, scya6, scya8, scya9, and ccr1 were up-regulated both by high extracellular calcium and by VD3, 3) the genes such as mmp1b, mmp3 and c3 which possibly stimulate bone resorption by osteoclast, were commonly up-regulated, 4) the gene such as c1q and msr2 which were related with macrophage function, were commonly down-regulated, 5) the genes which possibly stimulate osteoblast differentiation and/or mineralization of extracellular matrix, were commonly down-regulated; slc8a1, admr, plod2, lox, fosb, 6) the genes which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were commonly up-regulated; s100a4, npr3, mme, 7) the genes such as calponin 1 and tgfbi which possibly suppress osteoblast differentiation and/or mineralization of extracellular matrix, were up-regulated by high extracellular calcium but were down-regulated by VD3. These results suggest that in coculture condition, both high extracellular calcium and VD3 commonly induce osteoclastogenesis but suppress osteoblast differentiation/mineralization by regulating the expression of related genes.
        4,500원
        1 2 3