검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.05 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        In this study, N/S co-doped carbon felt (N/S-CF) was prepared and characterized as an electrode material for electric double-layer capacitors (EDLCs). A commercial carbon felt (CF) was immersed in an aqueous solution of thiourea and then thermally treated at 800 oC under an inert atmosphere. The prepared N/S-CF showed a large specific surface area with hierarchical pore structures. The electrochemical performance of the N/S-CF-based electrode was evaluated using both 3- electrode and 2-electrode systems. In the 3-electrode system, the N/S-CF-based electrode showed a good specific capacitance of 177 F/g at 1 A/g and a good rate capability of 41% at 20 A/g. In the 2-electrode system (symmetric capacitor), the freestanding N/S-CF-based electrode showed a specific capacitance of 275 mF/cm2 at 2 mA/cm2, a rate capability of 62.5 % at 100 mA/cm2, a specific power density of ~ 25,000 mW/cm2 at an energy density of 23.9 mWh/cm2, and a cycling stability of ~ 100 % at 100 mA/cm2 after 20,000 cycles. These results indicate the N/S co-doped carbon felts can be a promising candidate as a new electrode material in a symmetric capacitor.
        4,000원
        2.
        2022.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The current study was intended to synthesize and characterize the physical, chemical, and mechanical properties of carbon/ carbon (C/C) composites using the chemical vapor infiltration (CVI) process. To that end, carbon fiber felt (CF) was used as a preform, and methane and hydrogen were employed as reactive and carrier gases, respectively. After deciding on the optimum temperature (1050 °C), the composite samples were produced at different times (0–195 h). Then the samples were studied for their phase and microstructure characteristics using XRD, SEM, FESEM, FTIR, and Raman spectroscope. The results showed that by increasing the CVI process time up to 195 h, the density of the produced samples increased from 0.20 to 1.62 g/cm3, and the specific surface area decreased from 58.78 to 0.23 m2/ g. Also, by increasing the process duration, the deposition rate decreased due to the reduction of the available surface for carbon deposition. In other words, due to the increase in density, and decrease in both porosity and specific surface area, the thermal conductivity coefficient and the bending strength of the samples increased. The composite specimens’ SEM images of the fracture surface indicated a weak interface between the carbon fibers and the carbon layer developed by the CVI process. The structural analyses showed that the morphology of carbon growth during the CVI process was initially laminar, but changed to rough-laminar (RL) with the higher duration of the CVI process.
        4,800원
        3.
        2015.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Surface modified carbon felts were utilized as an electrode for the removal of inorganic ions from seawater. The surfaces of the carbon felts were chemically modified by alkaline and acidic solutions, respectively. The potassium hydroxide (KOH) modified carbon felt exhibited high Brunauer-Emmett-Teller (BET) surface areas and large pore volume, and oxygencontaining functional groups were increased during KOH chemical modification. However, the BET surface area significantly decreased by nitric acid (HNO3) chemical modification due to severe chemical dissolution of the pore structure. The capability of electrosorption by an electrical double-layer and the efficiency of capacitive deionization (CDI) thus showed the greatest enhancement by chemical KOH modification due to the appropriate increase of carboxyl and hydroxyl functional groups and the enlargement of the specific surface area.
        4,000원