본 연구에서는 합성가스 CO를 생산하기 위해 저급 석탄-CO2 촉매 가스화 실험을 수행하였 다. 제조된 CO가스 특성은 키데코 탄과 신화 탄에 KOH, K2CO3, Na2CO3 촉매들의 화학적 활성화 방 법을 이용하여 조사되었다. CO 제조공정은 석탄과 화학약품 활성화 비율, 가스 유량, CO2 전환 반응온 도와 같은 실험 변수 분석을 통해 최적화되었다. 제조된 합성 가스는 가스 크로마토그래피(GC)에 의해 분석 되었다. 실험조건 T = 950 °C, CO2 유량 100 cc/min에서, 20 wt% Na2CO3가 혼합된 키데코 탄 에 대해 98.6%, 20 wt% KOH가 혼합된 신화탄에 대한 98.9% CO2 전환율을 얻었다. 또한, 저급 석탄-촉매 가스화 반응은 동일한 공급 비와 반응 조건에서 97.8%, 98.8%의 CO 선택도를 얻었다.
Esterification reaction between succinic acid and 1,4-butanediol was kinetically investigated in the presence of nontoxic organometallic compound catalyst(ESCAT-100E) at 150-190℃. The reaction rates measured by the amount of distilled water from the reaction vessel. The Esterification reaction was carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd. The linear relationship was shown between apparent reaction rate constant and reciprocal absolute temperature. By the Arrhenius plot the activation energy have been calculated as 376.13 kJ/mol under nontoxic organometallic compound catalyst and also apparent reaction rate constant, k' was found to obey first kinetics with respect to the concentration of catalyst.
Transesterification reactions (methyl methacrylate with monoethanolamine, methyl methacrylate with n-butyl alcohol, dimethylphthalate with ethylene glycol, dimethyl phthalate with monoethanolamine) were kinetically investigated in the presense of various metal acetate catalysts at 110℃. The amount of reactants was measured by gas and liquid chromatography, and the reaction rates also measured from the amount of reaction products and reactants upon each catalyst. The transesterification reactions were carried out under the first order conditions respect to the concentration of reactants, respectively. The overall reaction order was 2nd, Maximum reaction rates were appeared at the range of 1.4 to 1.6 in electronegativity of metal ions and maximum catalytic activities were obserbed at the range of 1.5 to 1,8 in instability constant of metal acetates.
In this study, the decomposition of gas-phase TCE, Benzene and Toluene, in air streams by direct UV Photolysis and UV/TiO2 process was studied.
For direct UV Photolysis, by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene and Benzene in this work were determined to be 0.00392s-1, 0.00230s-1 and 0.00126s-1, respectively. And the adsorption constant K of TCE, Toluene and Benzene in this work were determined to be 0.0519mol-1 ,0.0313mol-1 and 0.0084mol-1, respectively. For UV/TiO2 system by regressing with computer calculation to the experimental results the value of reaction rate constant k of TCE, Toluene, and Benzene in this work were determined to be 5.74g/ℓ․min, 3.85g/ℓ․min, and 1.18g/ℓ․min, respectively. And the catalyst adsorption constant K of TCE, Toluene, and Benzene in this work were determined to be 0.0005m3/mg, 0.0043m3/mg and 0.0048m3/mg, respectively.