This study examined the effects of freshwater discharge by artificial dikes from the Kanwol and Bunam lakes on the dynamics in the Chunsu Bay, Yellow Sea, Korea, during the summer season based on three-dimensional numerical modeling experiments. Model performances were evaluated in terms of skill scores for tidal elevation, velocity, temperature, and salinity and these scores mostly exceeded 90 %. The variability in residual currents before and after the freshwater discharge was examined. The large amount of lake water discharge through artificial dikes may result in a dramatically changed density field in the Chunsu Bay, leading to an estuarine circulation system. The density-driven current formed as a result of the freshwater inflow through the artificial dikes (Kanwol/Bunam) caused a partial change in the tidal circulation and a change in the scale and location of paired residual eddies. The stratification formed by strengthened static stability following the freshwater discharge led to a dramatic increase in the Richardson number and lasted for a few weeks. The strong stratification suppressed the vertical flux and inhibited surface aerated water mixing with bottom water. This phenomenon would have direct and indirect impacts on the marine environment such as hypoxia/anoxia formation at the bottom.
The distribution of dissolved oxygen (DO) and its variability in Chunsu Bay were studied. Monthly hydrographic survey and realtime monitoring for water quality conditions were carried out in study area. Vertical distribution of DO shows the formation of hypoxia in the bottom water in the vicinity of the artificial dyke and net cage aquaculture site in summer. Annual mean of DO was 8.4 mg/l, with minimum monthly mean of 6.9 mg/l in July and maximum of 11.2 mg/l in March. Temporal variation of DO at bottom water around the net cage aquaculture site shows pronounced oscillatory characteristics with range of 0.5~7.0 mg/l. Coherency analyses between the tidal range and DO concentration shows that variation of DO is significantly coherent with tidal range at semi-diurnal period with 1~3.5 hours phase-lags. A simple DO budget model was set up to account for the formation of the extreme hypoxic conditions in Chunsu Bay. The governing equation is based on the mass-balance for kinetic process with simplified parameter of source and sink terms of DO. the source term is represented by replenishment through the vertical and horizontal diffusion and mixing. the sink terms comprise function of sediment oxygen demand (SOD) and carbonaceous biochemical oxygen demand (CBOD). The result of numerical solution indicates the dominant role of SOD as the overriding factor against the oxygen supply.