This study examines the surface characteristics, electrical conductivity, electromagnetic wave blocking characteristics, infrared (IR) transmittance, stealth function, thermal characteristics, and moisture characteristics of IR thermal imaging cameras. Nylon film (NFi), nylon fabric (NFa), and 5 types of nylon mesh were selected as the base materials for aluminum sputtering, and aluminum sputtering was performed to study IR thermal imaging, color difference, temperature change, and so on, and the relationship with infrared transmittance was assessed. The electrical conductivity was measured and the aluminum-sputtered nylon film demonstrated 25.6kΩ of surface resistance and high electrical conductivity. In addition, the electromagnetic wave shielding characteristics of the sputtering-treated nylon film samples were noticeably increased as a result of aluminum sputtering treatment as measured by the electromagnetic wave blocking characteristics. When NFi and NFa samples with single-sided sputtering were placed on the human body (sputtering layer faced the outside air) and imaged using IR thermographic cameras, the sputtering layer displayed a color similar to the surroundings, showing a stealth effect. Moreover, the tighter the sample density, the better the stealth function. According to the L, a, b measurements, when the sputtering layer of NFi and NFa samples faced the outside air, the value of a was generally high, thereby demonstrating a concealing effect, and the E value was also high at 124.2 and 93.9, revealing a significant difference between the treated and untreated samples. This research may be applicable to various fields, such as the military wear, conductive sensors, electromagnetic wave shielding film, and others.
The spaces under bridge have been used as business zone and yard. The facilities and piles of goods under bridges are considered at high risk for fire danger. In this paper, CFD simulations were conducted to predict the temperature change beneath steel and concrete bridges due to fire in clothing boxes, frequently placed in the space under bridge. Based on these results, the relationship between the piled height of clothing boxes and the clearance of bridge, and temperatures beneath the bridge was derived using a Lagrange interpolation.
The spaces under bridge have been used as business zone and yard. The facilities and piles of goods under bridges are considered at high risk for fire danger. In this paper, CFD simulations were conducted to predict the temperature change beneath steel and concrete bridges due to fire in clothing boxes, frequently placed in the space under bridge. Based on these results, the relationship between the piled height of clothing boxes and the clearance of bridge, and temperatures beneath the bridge was derived using a Lagrange interpolation.