The capacity of high nickel Li(NixCoyMn1-x-y)O2 (NCM, x ≥ 0.8) cathodes is known to rapidly decline, a serious problem that needs to be solved in a timely manner. It was reported that cathode materials with the {010} plane exposed toward the outside, i.e., a radial structure, can provide facile Li+ diffusion paths and stress buffer during repeated cycles. In addition, cathodes with a core-shell composition gradient are of great interest. For example, a stable surface structure can be achieved using relatively low nickel content on the surface. In this study, precursors of the high-nickel NCM were synthesized by coprecipitation in ambient atmosphere. Then, a transition metal solution for coprecipitation was replaced with a low nickel content and the coprecipitation reaction proceeded for the desired time. The electrochemical analysis of the core-shell cathode showed a capacity retention of 94 % after 100 cycles, compared to the initial discharge capacity of 184.74 mA h/g. The rate capability test also confirmed that the core-shell cathode had enhanced kinetics during charging and discharging at 1 A/g.
This study was carried out for characterization of MIO synthesized in our laboratory by co-precipitation method and applied isotherm and kinetic models for adsorption properties. XRD analysis were conducted to find crystal structure of synthesized MIO. Further SEM and XPS analysis was performed before and after phosphate adsorption, and BET analysis for surface characterization. Phosphate stock solution was prepared by KH2PO4 for characterization of phosphate adsorption, and batch experiment was conducted using 50 ml conical tube. Langmuir and Freundlich models were applied based on adsorption equilibrium test of MIO by initial phosphate solution. Pseudo first order and pseudo second order models were applied for interpretation of kinetic model by temperature. Surface area and pore size of MIO were found 89.6 m2/g and 16 nm respectively. And, the determination coefficient (R2) value of Langmuir model was 0.9779, which was comparatively higher than that of Freundlich isotherm model 0.9340.
가압 경수형 원자로 (pressurized light water reactor) 냉각재 계통 내의 주된 분식 생성물로 알려져 있는 nickel ferrite의 거동에 대해 고찰하기 위해 모의 nickel ferrite(Ni0.75Fe2.25O4)를 공침법으로 제조하였다. 수용액-pH-조절로는 am-monia 또는 potassium carbonate를, 공침물-세척제는 ammonia 수용액이나 potassium carbonate 수용액 또는 2차 증류수를 사용하였다. Nickel ferrite의 생성 및 수용액-pH-조절제와 공치물-세척제가 최종 생성물의 Ni-Fe 몰 비에 따른 수율 및 특성에 미치는 영향은 EDX, XPS, XRD 및 SEM으로 고찰하였다. 반응 전.후 Ni/Fe 몰 비에 따른 수율은, pH를 potassium carbon-ate로 조절한 후 2차 증류수로 공침물을 세척한 경우가 0.994로 가장 높이 나왔으며, pH-조절제로 potassium carbonate를 사용한 경우가 ammonia를 사용한 경우에 비해 높은 수율을 나타냈다. 이러한 차이는 공침 시에 수용액 내에서 ammonia가 보여주는 상대적으로 큰 Na2+←NH3 착화 효과와 더불어 공침물-세척제의 pH에 기인하는 것으로 해석하였다.