검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : The purpose of this study is to verify the influences on the compactibility evaluation of WMA (Warm Mix Asphalt) mixture by laboratory experiments. METHODS : Two types of WMA additives (chemical and wax types) and two types of compactors (marshall and gyratory) are used in laboratory experiments. In addition, two types of WMA processes (wet and dry) are tested to verify the impact of manufacturing process. RESULTS : The laboratory results show that the effects of compaction method on compactibility are different depending on the type of additive. The compaction method has a significant impact on WMA mixture with chemical type additive to extent that it determines whether required criterion is satisfied, but only little on WMA mixture with wax type additive. In the case of wet process for WMA mixture manufacturing, it is hard to assess the air void of HMA mixture made of same asphalt binder used in WMA mixture since the additive has already been added in asphalt binder. And the test results show that air voids of HMA mixture vary within properties of asphalt binder. CONCLUSIONS : Through this study, it is found that compactibility of WMA mixture is affected by the compaction methods depending on the additive types and by the WMA mixture manufacturing process. Therefore, those are recommended to be considered when evaluating compactibility of WMA mixtures.
        4,000원
        2.
        2011.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the current study, the effects of particle size on compaction behavior of water-atomized pure iron powders are investigated. The iron powders are assorted into three groups depending on the particle size; 20-45 , 75-106 , and 150-180 for the compaction experiments. The powder compaction procedures are processed with pressure of 200, 400, 600, and 800 MPa in a cylindrical die. After the compaction stage, the group having 150-180 of particle size distribution shows the best densification behavior and reaches the highest green density. The reason for these results can be explained by the largest average grain size in the largest particle group, due to the low plastic deformation resistance in large grain sized materials.
        4,000원