이 연구에서는 p-version 동적무한요소법을 도입함으로써 FE-IE 기법에 기반한 KIESSI-3D 프로그램의 속도향상에 역점 을 두었다. KIESSI-3D의 성능을 평가하기 위해 8가지 실규모 SSI 문제에 대한 수치해석을 수행하였다. 이를 위해 근역지반 모델의 반경( r0 )이 구조물기초 반경(R)의 1.2배, 1.5배, 3.0배인 KIESSI-3D 해석모델을 고려하였다. 또한 SASSI2010 프로그 램을 이용한 SSI 해석을 수행하였으며, 이 결과를 KIESI-3D에 의한 결과와 정확성 및 계산속도를 비교하였다. 수치해석 결 과, 인 KIESI-3D 모델을 사용하면 정확한 해석을 수행할 수 있음을 알 수 있었다. 계산속도 측면을 보면, 새로운 KIESSI-3D의 해석속도는 기존 KIESSI-3D에 비해 최대 25배 빠른 것으로 나타났다.
본 논문에서는 기존의 POM(Princeton Ocean Model) WAD(Wetting and Drying) 모형을 연안역에서 조석조류의 계산에 적합하도록 개경계에서 조석조화상수를 입력하여 사용할 수 있도록 하였고, CTS(Computing Time Saving) 기법을 도입하여 계산시간을 단축할 수 있도록 개선하였다. 이와 같이 수정된 모형은 장방형 내만에 하나의 절점을 갖는 정상파에 대한 해석해 실험과 유속 및 열확산에 대한 수리모형 실험결과와 비교하여 좋은 결과를 얻었다. 그리고 간석지가 발달한 광양만의 현지해역에 이 CTS 기법을 적용하여 계산시간이 39.4% 단축되는 결과를 얻었다.
본 연구에서는 삼각형 및 사각형 혼합격자의 적용이 가능하도록 기 개발된 2차원 유한체적모형의 계산속도를 개선하기 위해 모형의 병렬화를 수행하였다. 모형의 병렬화를 위해 코어 수의 제약에 자유로운 MPI 기법을 이용하였고, 프로그램 내의 흐름률 및 계산시간간격의 계산영역에 대해 논블록킹 점대점통신을 이용하였다. 병렬화 된 개발모형의 기존모형에 대한 계산결과의 일치성을 검증하고, 계산시간에 대한 성능향상도와 효율성을 검토하기 위해, 90°의 만곡이 존재하는 L자형 실험하도에 대한 댐 붕괴해석과 자연하천인 Malpasset 댐의 붕괴사상에 대해 모형을 적용하였다. 또한 격자수에 따라 4개의 Case로 구분하여 각각 모의함으로써, 입력규모의 크기에 따른 계산시간의 성능향상도를 함께 검토하였다. 분석결과 병렬화 모형에 의한 모의 결과는 기존모형 및 실측치와 비교하여 만족할 만한 정확도를 확보하였고, 기존모형에 대비해 약 3배 정도의 계산시간에 대한 성능이득을 얻을 수 있었다. 또한 입력자료 규모에 대한 Case별 모의 결과를 통해 적절한 입력자료의 규모와 프로세스 개수를 사용하는 것이 통신부하를 최소화할 수 있는 방안임을 확인할 수 있었다.