This surfactant can be used as a cosmetics and chemical dispersants. The variation of critical micelle concentration(CMC) with temperature for N-eicosyl pyridinium bromide over the range 40℃ to 60℃ has been measured by drop methods. Thermodynamic quantities for micellization of N-eicosyl pyridinium bromide in water have been calculated by polynominal equation.
화장품과 유처리제 등에 응용할 수 있는 양이온 계면활성제인 N-octadecyl pyridinium bromide를 사용하여 온도 40~60℃ 범위에서 적하법을 이용한 임계미셀농도를 적용 미셀형성에 따른 열역학적 특성(자유에너지, 엔탈피, 엔트로피, 열용량)을 조사하였다. 그 결과 자유에너지 변화는 온도가 증가함에 따라 감소함을 알 수 있었다.
The critical micelle concentration (CMC) at which micelles start to form from a surfactant solution is usually measured in terms of conventional concentration units. However, the thermodynamic potentials are expressed in terms of mole fraction XCMC and XCMC cannot be directly measured experimentally. The Gibbs free energy, δG*mic, in particular is related to XCMC through δG*mic = RTlnXCMC. When it comes to CMC, the molar CMC, CCMC, differs only by the proportionality C-1w with Cw being the molarity of water. Hence, CCMC is found to be a proper representation of CMC. However, in calculation of δG*mic and other thermodynamic potentials from the CMC, XCMC or CCMC/Cw should be used.