검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Daechung Reservoir has been suffering from severe cyanobacterial blooming periodically due to the water pollutants from the watershed, especially nutrients from nonpoint sources. As a countermeasure, an artificial wetland was constructed to mitigate the pollutant load from the watershed by utilizing the vegetation. We investigated the water quality of the influent and outflow of the wetland during years 2014~2020 to evaluate the performance of pollutant removal through the wetland. Major pollutants (e.g. BOD, COD, SS, T-N, and T-P) were largely reduced during the retention in the wetland while nutrients removal was more efficient than that of organic matters. Pollutant removal efficiency for different inflow concentrations was also investigated to estimate the wetland’s capability as a way of managing nonpoint sources. The efficiency of water treatment was significantly higher when inflow concentrations were above 75th percentile for all pollutant, implying the wetland can be applied to the pre-treatment of high pollution load including initial rainfall runoff. Furthermore, the yearly variation of removal efficiency for seven years was analyzed to better understand long-term trends in water treatment of the wetland. The annual treatment efficiency of T-P was very high in the early stages of vegetation growth with high concentration of inflow water. However, it was confirmed that the concentration of inflow water decreased, vegetation stabilized, and the treatment efficiency gradually decreased as the soil was saturated. The findings of the study suggest that artificial wetlands can be an effective method for controlling harmful algal blooms by alleviating pollutant load from the tributaries of Daechung Reservoir.
        4,500원
        2.
        2022.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The occurrence of cyanobacterial blooming and the contaminant sources were analyzed in the downstream of Jecheon Stream, a tributary of Chungju Reservoir. The concentrations of chlorophyll a at the Myungseo Fishing Point (GPS; 37°03′25.5″N, 128°03′13.6″E) were 399.2 and 184.8 mg m-3 on October 18, 2015 and September 25, 2016, respectively, and the concentrations of total microcystins, a cyanobacterial toxin mainly produced by Microcystis, were 124.09 and 79.71 μg L-1, respectively. The occurrence of cyanobacterial blooming at the downstream of Jecheon Stream was closely related to the water level of Chungju Reservoir. The cyanobacterial blooming occurred after the increase of water level in Chungju Reservoir, when the water body stagnated. As a result of analyzing National Water Quality Monitoring Data of the upper region of Jecheon Stream, the main source of pollutant was Jangpyeong Stream, the tributary of Jecheon Stream, and the discharge water from Jecheon Wastewater Treatment Plant located in Jangpyeong Stream was considered to be the most important source of contaminant.
        4,000원