Environmental conditions are important in increasing the fruit sugar content and productivity of the new cultivar Autumn Sense of Actinidia arguta. We analyzed various soil properties at experimental sites in South Korea. A Pearson’s correlation analysis was performed between the soil properties and sugar content or productivity of Autumn Sense. Further, a decision tree was used to determine the optimal soil conditions. The difference in the fruit size, sugar content, and productivity of Autumn Sense across sites was significant, confirming the effects of soil properties. The decision tree analysis showed that a soil C/N ratio of over 11.49 predicted a sugar content of more than 7°Bx at harvest time, and soil electrical capacity below 131.83 μS/cm predicted productivity more than 50 kg/vine at harvest time. Our results present the soil conditions required to increase the sugar content or productivity of Autumn Sense, a new A. arguta cultivar in South Korea.
This study applies optimization-based algorithm to develop combination classification methods. We propose a genetic algorithm-based combination classification method of multiple decision trees to improve predictive accuracy, optimize classification rules, and interpret classification results. The basic algorithm for decision tree has been constructed in a top-down recursive divide-and-conquer manner. Based on different split measures (attribute selection measures), different decision tree algorithms can be produced, and then multiple decision trees can be formed. We proposed the parallel combination model of multiple decision trees. On top of the combination model, multiple decision trees are parallel combined. Each decision tree produces its own classification rules according to training samples from which one can present the classification result using probability distribution of target class label. At the bottom, the classification result of each decision tree serves as the input for combination algorithm in producing classification result and rules for the combination model. Combination algorithm adopts weighted summation of the outputs of probability measurement levels from individual decision trees, while genetic algorithm optimizes connection weight matrix. Finally the target class label with the largest probability output value is selected as the decision result for combination classification methods. The proposed method is applied to the issues of customer credit rating assessment and customer response behaviour pattern recognition in CRM. From the simulation results it is concluded that the proposed method has higher predictive accuracy than single decision tree. Moreover, it retains good interpretability and optimizes classification rules.
Expectation and interest about e-CRM are rising for more efficient customer management in on-line including electronic commerce. The decision-making tree can be used usefully as the data mining technology for e-CRM. In this paper, the representative decision making techniques, CART, C4.5, CHAID analyzed the differences in personalization point of view with actuality customer data through an experiment. With these analysis data, it is proposed a new decision-making tree system that has big advantage in personalization techniques. Through new system, it can get following advantage. First, it can form superior model more qualitatively in personalization by adding individual's weight value. Second it can supply information personalized more to customer. Third, it can have high position about customer's loyalty than other site of similar types of business. Fourth, it can reduce expense that cost marketing and decision-making. Fifth, it becomes possible that know that customer through smooth communication with customer who use personalized service wants and make from goods or service's quality to more worth thing.