ADCP는 하천의 3차원 유속과 수심 자료를 매우 효율적이고 빠르게 측정할 수 있으며, 그 자료의 공간 및 시간적 해상도는 기존의 전통적인 유속 측정 방법들과 비교하여 매우 정밀하다는 장점이 있다. 하지만 ADCP는 하상 부근과 센서 근처에서의 미계측 영역이 발생하고 이 미계측 영역의 유속을 얼마나 정확하게 산정하느냐에 따라 ADCP 유량 측정의 정확도에 영향을 미친다. 본 연구에서는 ADCP 유량 산정 시 범용적으로 활용되고 있는 1/6 멱법칙(power law)을 활용한 미계측 영역의 유량 측정 결과의 정확도를 분석하였다. 이를 위해 실규모 직선수로에서 ADCP를 고정시킨 상태에서 측정한 유속 자료를 1/6 멱법칙과 대수 법칙(log law)을 적용하여 외삽 한 유속분포와 유량 산정 결과를 ADV를 이용하여 정밀하게 측정한 결과와 비교하였다. 비교 결과 전체적으로 대수 법칙으로 외삽한 경우가 높은 정확도를 나타냈으며, 수표면 근처 미계측 영역에서는 1/6 멱법칙은 유량을 작게 산정하는 경향을 나타냈고, 하상 근처의 미계측 영역에서는 유량을 크게 산정하는 경향을 나타냈다. 이 결과는 기존 1/6 멱법칙을 활용한 하상 및 수표면 부근 미계측 영역 유량 추정 방법이 오차를 수반함을 의미한다. 따라서 ADCP 정지법 측정 방식을 사용할 경우, 대수 법칙이 1/6 멱법칙보다 정확한 상하부 미계측 유량 추정 결과를 보여주었으므로 대안으로 고려되어야 할 것이다. 또한 제방 근처 미계측 영역의 유량 측정 정확도를 높이기 위해서는 수심이 0.6 m 이상을 확보한 측선을 기준으로 유량을 산정할 경우 신뢰도 높은 유량 측정 결과를 보였다. 향후, ADCP 정지법 측정 방식에 비해 보다 많이 활용되고 있는 보트탑재 이동식 ADCP의 경우도 이와 같은 검증이 필요하다고 하겠다.
In the mountain streams in Jeju Island, strong turbulence and roughness usually made it nearly impossible to utilize most of intrusive instrumentation for streamflow discharge measurements. Instead, a non-intrusive fixed electro-magnetic wave surface velocimetry (fixed EWSV: Kalesto) became alternatively popular in many representative streams to measure stream discharge seamlessly. Currently, Kalesto has shown noteworthy performance with little loss in flood discharge measurements and also has successfully provided discharge for every minute. However, Kalesto has been operated to regard its measured one-point velocity as the representative mean velocity for the given cross-section. Therefore, it could be highly possible to potentially encompass discharge measurements errors. In this study, we analyzed the difference between such Kalesto discharge measurements and other alternative concurrent discharge measurements such as Acoustic Doppler Current Profiler (ADCP) and mobile EWSV which were able to measure velocity in multi-points in the cross-section. Consequently, Kalesto discharge deviated from ADCP discharge in amount of 48% for relatively low flow, and more than 20% difference for high flow compared with mobile EWSV discharge measurements. These results indicated that the one-point velocity measured by Kalesto should be used as a cross-sectional mean velocity, rather it should be accounted for as an index-velocity in conjunction with directly measured cross-sectional mean velocity by using more reliable instrumentations. After inducing Kalesto Discharge Correction Coefficient (KDCC) that actually means relationship between index velocity and cross-sectional mean velocity, the corrected discharge from Kalesto was significantly improved. Therefore, we found that index velocity method should be applied to obtain better accuracy of discharge measurement in case of Kalesto operation.
시간에 따른 하도의 수위 및 유량 변화에 영향을 많이 받는 수리구조물의 설계에 있어서 부정류 흐름 해석은 반드시 필요하다. 일반적으로 부정류 흐름 해석에는 수치모형이 많이 활용되고 있으나 수치모형의 검·보정을 위한 현장 자료의 획득이 어려운 경우가 많다. 또한 자료구축이 가능하더라도 인력과 비용이 많이 소모되며, 측정 정확도를 신뢰하기 어려운 경우가 많다. 이러한 경우 수치모형의 검·보정을 위해 부정류 수리실험을 통해 획득되는 자료를 활용하는 것이 대안이 될 수 있다. 따라서 본 연구에서는 다양한 형태의 부정류 수문곡선을 실험에서 재현할 수 있는 유량공급장치를 개발하고자 하며, 개발된 부정류 유량공급장치를 이용하여 수리실험 수로에서 재현되는 수문곡선과 목표 수문곡선을 비교 분석함으로써 재현 정확도를 정량적으로 평가하고자 한다. 본 연구에서는 유량이 급격하게 증가 또는 감소하는 사각형 형태, 첨두유량 발생 시간이 짧은 삼각형 형태 및 일반적인 홍수 수문곡선 형태의 종(bell) 형태 수문곡선을 대상으로 재현 오차 및 Root Mean Square Error (RMSE)를 분석하였다. 재현 정확도 분석 결과, 사각형 형태의 수문곡선 재현 오차는 약 59% 정도로 가장 크게 나타났으며, 삼각형 형태의 수문곡선은 단일첨두와 이중첨두 형태 모두 약 10% 정도의 재현 오차가 나타났지만 홍수 수문곡선 형태인 종 모양의 수문곡선의 재현 오차는 최대 2% 이내인 것으로 나타났다.
본 연구에서는 괴산댐 하류 달천에서 6가지 직접 유량 측정 방법-유속면적법, 봉부자법, ADCP이동측정법, ADCP정지 측정법, 전자파표면유속계, LSPIV-을 적용하고, 이를 댐 방류량 및 유속면적법과 비교함으로써 정확도를 상호 평가하였다. 이를 위해 2005년부터 2010년까지 실시된 총 39회의 유량측정결과가 분석되었다. 댐 방류량과의 비교 결과, 봉부자법을 제외한 나머지5가지 방법은 평균 6.2% 이내의 절대값오차를 나타냈다. 유속면적법과 다른