Rarefied cosmic plasmas generally do not achieve thermodynamic equilibria, and a natural consequence of this is the presence of a significant population of charged particles with energies well above those of the bulk population. These are exemplified by the galactic cosmic rays, but the importance of these high energy populations extends well beyond that context. I review here some of the basic issues associated with the propagation and acceleration of cosmic rays, especially in the context of collisionless plasma shocks.
Non-LTE calculations, with the non-thermal ionization effects included, indicated that for electron bombardment, the Hα line is widely broadened and shows a strong central reversal. Significant enhancements at the line wings of Lyα and Lyβ are also predicted at the beginning of the impulsive phase of flares. For the proton bombardment, no strong broadening and no large central reversal are expected. However, due to proton-hydrogen charge exchange, the enhancements at the red wings of Lyα and Lyβ lines at the early impulsive phase of flares are significant. Our results show that the electron beam can also in some cases generate visible and UV continuum emission in white-light flares. However, at the onset phase, a negative flare may appear within several seconds, due to the increase of the H- opacity. Another spectroscopic signature of energetic particles, i.e. the impact polarization of atomic lines, is also mentioned.
The elements that impact the dynamics and collaborations of waves and particles in the magnetosphere of planets have been considered here. Saturn’s internal magnetosphere is determined by substantiated instabilities and discovered to be an exceptional zone of wave activity. Interchanged instability is found to be one of the responsible events in view of temperature anisotropy and energization processes of magnetospheric species. The generated active ions alongside electrons that constitute the populations of highly magnetized planets like Saturn’s ring electron current are taken into consideration in the current framework. The previous and similar method of characteristics and the perturbed distribution function have been used to derive dispersion relation. In incorporating this investigation, the characteristics of electromagnetic ion cyclotron wave (EMIC) waves are determined by the composition of ions in plasmas through which the waves propagate. The effect of ring distribution illustrates non-monotonous description on growth rate (GR) depending upon plasma parameters picked out. Observations made by Cassini found appropriate for modern study, have been applied to the Kronian magnetosphere. Using Maxwellian ring distribution function of ions and detailed mathematical formulation, an expression for dispersion relation as well as GR and real frequency (RF) are evaluated. Analysis of plasma parameters shows that, proliferating EMIC waves are not developed much when propagation is parallelly aligned with magnetosphere as compared to waves propagating in oblique direction. GR for the oblique case, is influenced by temperature anisotropy as well as by alternating current (AC) frequency, whereas it is much affected only by AC frequency for parallel propagating waves.
In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.