간행물

Journal of Astronomy and Space Sciences KCI 등재 SCOPUS

권호리스트/논문검색
이 간행물 논문 검색

권호

제38권 1호 (2021년 3월) 7

Research Paper

1.
2021.03 서비스 종료(열람 제한)
The observation of stellar occultations constitutes one of the most important techniques for determining the dimensions and establishing the physical parameters of small Solar System bodies. The most substantial calculations are obtained from multiple observations of the same event, which turns the observation of stellar occultations into highly collaborative work and groups teams of observers through international networks. The above situation also requires the participation of both professional and amateur observers in these collaborative networks. With the aim of promoting the participation of professional and amateur groups in the collaborative observation of stellar occultations, we present the methodology developed by the Astronomical Observatory of the Technological University of Pereira (OAUTP) for the observations of occultations due small Solar System bodies. We expose the three fundamental phases of the process: the plan to make observations, the capture of the events, and the treatment of the data. We apply our methodology using a fixed station and a mobile station to observe stellar occultations due to MBAs (354) Eleonora (61) Danae (15112) Arlenewolfe (3915) Fukushima (61788) 2000 QP181 (425) Cornelia (257) Silesia (386) Siegena and (41) Daphne, and due to TNOs 1998BU48 and (529823) 2010 PP81. The positive detections for the objects (257) Silesia (386) Siegena and (41) Daphne allow us to derive lower limits in the diameter of the MBAs of 63.1 km, 166.2 km and 158.7 km and offsets in the astrometric position (Δαc cosδc, Δδc) of 622.30 ± 0.83, 15.23 ± 9.88 mas, 586.06 ± 1.68, 43.03 ± 13.88 mas and –413.44 ± 9.42, 234.05 ± 19.12 mas, respectively.
2.
2021.03 서비스 종료(열람 제한)
Utilizing a new version of the sunspot number and group sunspot number dataset available since 2015, we have statistically studied the relationship between solar activity parameters describing solar cycles and the slope of the linear relationship between the monthly sunspot numbers and the monthly number of active days in percentage (AD). As an effort of evaluating possibilities in use of the number of active days to predict solar activity, it is worthwhile to revisit and extend the analysis performed earlier. In calculating the Pearson’s linear correlation coefficient r, the Spearman’s rank-order correlation coefficient rs, and the Kendall’s τ coefficient with the rejection probability, we have calculated the slope for a given solar cycle in three different ways, namely, by counting the spotless day that occurred during the ascending phase and the descending phase of the solar cycle separately, and during the period corresponding to solar minimum ± 2 years as well. We have found that the maximum solar sunspot number of a given solar cycle and the duration of the ascending phase are hardly correlated with the slope of a linear function of the monthly sunspot numbers and AD. On the other hand, the duration of a solar cycle is found to be marginally correlated with the slope with the rejection probabilities less than a couple of percent. We have also attempted to compare the relation of the monthly sunspot numbers with AD for the even and odd solar cycles. It is inconclusive, however, that the slopes of the linear relationship between the monthly group numbers and AD are subject to the even and odd solar cycles.
3.
2021.03 서비스 종료(열람 제한)
In this paper, we present observations of the Space Radiation Detectors (SRDs) onboard the Next Generation Small Satellite-1 (NEXTSat-1) satellite. The SRDs, which are a part of the Instruments for the study of Stable/Storm-time Space (ISSS), consist of the Medium-Energy Particle Detector (MEPD) and the High-Energy Particle Detector (HEPD). The MEPD can detect electrons, ions, and neutrals with energies ranging from 20 to 400 keV, and the HEPD can detect electrons over an energy range from 0.35 to 2 MeV. In this paper, we report an event where particle flux enhancements due to substorm injections are clearly identified in the MEPD A observations at energies of tens of keV. Additionally, we report a specific example observation of the electron distributions over a wide energy range in which we identify electron spatial distributions with energies of tens to hundreds of keV from the MEPD and with energy ranging up to a few MeV from the HEPD in the slot region and outer radiation belts. In addition, for an ~1.5-year period, we confirm that the HEPD successfully observed the well-known outer radiation belt electron flux distributions and their variations in time and L shell in a way consistent with the geomagnetic disturbance levels. Last, we find that the inner edge of the outer radiation belt is mostly coincident with the plasmapause locations in L, somewhat more consistent at subrelativistic energies than at relativistic energies. Based on these example events, we conclude that the SRD observations are of reliable quality, so they are useful for understanding the dynamics of the inner magnetosphere, including substorms and radiation belt variations.
4.
2021.03 서비스 종료(열람 제한)
In the general accretion disk model theory, the accretion disk surrounding an astronomical object comprises fluid rings obeying Keplerian motion. However, we should consider relativistic and rotational effects as we close in toward the center of accretion disk surrounding spinning compact massive objects such as a black hole or a neutron star. In this study, we explore the geometry of the inner portion of the accretion disk in the context of Mukhopadhyay’s pseudo-Newtonian potential approximation for the full general relativity theory. We found that the shape of the accretion disk “puffs up” or becomes thicker and the luminosity of the disk could exceed the Eddington luminosity near the surface of the compact spinning black hole.
5.
2021.03 서비스 종료(열람 제한)
GLONASS, a satellite navigation system developed in Russia since 1976, is defunct and orbits in an unstable attitude. The satellites in these problems are not managed and there is no precise information, which can increase the risk of collisions with other space objects. In this study, detailed attitude dynamic have to be analyzed through photometry data, which requires spin period and spin axis. The light curve data is obtained by observing through the photometer at the Graz station and the power spectrum is calculated to obtain the cycle of the satellite. The geometric relationship between observer and sun is analyzed for GLONASS-50 satellite. The box-wing model is applied to obtain the phase reflection of the satellite and obtain the Irradiation of the satellite through this information. In Light Curve and Irradiation, the spin axis is calculated for each peak points with the distance square minimum technique. The spin axis of the GLONASS-50 satellite is RA = 116°, Dec = 92°.

Technical Paper

6.
2021.03 서비스 종료(열람 제한)
The universe is well known to be consists of dark energy, dark matter and the standard model (SM) particles. The dark matter dominates the density of matter in the universe. The dark matter is thought to be linked with dark photon which are hypothetical hidden sector particles similar to photons in electromagnetism but potentially proposed as force carriers. Due to the extremely small cross-section of dark matter, a large amount of data is needed to be processed. Therefore, we need to optimize the central processing unit (CPU) time. In this work, using MadGraph5 as a simulation tool kit, we examined the CPU time, and cross-section of dark matter at the electron-positron collider considering three parameters including the center of mass energy, dark photon mass, and coupling constant. The signal process pertained to a dark photon, which couples only to heavy leptons. We only dealt with the case of dark photon decaying into two muons. We used the simplified model which covers dark matter particles and dark photon particles as well as the SM particles. To compare the CPU time of simulation, one or more cores of the KISTI-5 supercomputer of Nurion Knights Landing and Skylake and a local Linux machine were used. Our results can help optimize high-energy physics software through high-performance computing and enable the users to incorporate parallel processing.
7.
2021.03 서비스 종료(열람 제한)
For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite’s orbit in terms of the maximum duration the satellite’s station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.