The F2-layer critical frequency (foF2) data from several ionosondes are employed to study the long-distance effect of the M8.8 Chile Earthquake of February 27, 2010, on the F2 layer. Significant perturbations of the peak F2-layer electron density have been observed following the earthquake at two South African stations, Hermanus and Madimbo, which are located at great circle distances of ~8,000 and ~10,000 km from the earthquake epicenter, respectively. Simplified estimates demonstrate that the observed ionospheric perturbations can be caused by a long-period acoustic gravity wave produced in the F-region by the earthquake.
In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.
Optical observation is one of the most common techniques used for characterizing the physical properties of unknown objects and debris in space. This research presents measurements and properties of the new object 96019 from ground-based optical methods. Optical observations of this small object were performed using a charge-coupled device (CCD) camera and the Santel-500 telescope at the Zvenigorod Observatory. The orbital elements and physical properties of this object, such as areato- mass ratio, have been determined. The results show that this small object has a low area-to-mass ratio, between 0.009 and 0.12 m2/kg. The light curve of object 96019 is given: Over the time intervals, variations in brightness are analyzed and the maximum brightness was found to be 12.4 magnitudes. The observational results show that, this object brightens by about three magnitudes over a time span of three minutes. Based on these observations, the characteristics and physical properties of this object are discussed.
In this paper, analysis results of the photometric data of DO Dra will be presented. DO Dra had been observed with 1 m LOAO telescope and 0.6 m CBNUO telescope from 2005 through 2014. The data shows kind of periodic oscillation behavior in the orbital period and also in the spin period. It has been found that these QPOs are not observed always and that the periods vary from 30 min to 80 min. We also found that the period variation seems to repeat itself with the period of 13.5 days. It is essential to monitor this object in the future as well as to carry out model calculation in order to have better understanding of these QPO phenomena.
This study examines the scale unique instruments used for astronomical observation during the Joseon dynasty. The Small Simplified Armillary Sphere (小簡儀, So-ganui) and the Sun-and-Stars Time-Determining Instrument (日星定時儀, Ilseong-jeongsi-ui) are minimized astronomical instruments, which can be characterized, respectively, as an observational instrument and a clock, and were influenced by the Simplified Armilla (簡儀, Jianyi) of the Yuan dynasty. These two instruments were equipped with several rings, and the rings of one were similar both in size and in scale to those of the other. Using the classic method of drawing the scale on the circumference of a ring, we analyze the scales of the Small Simplified Armillary Sphere and the Sun-and-Stars Time-Determining Instrument. Like the scale feature of the Simplified Armilla, we find that these two instruments selected the specific circumference which can be drawn by two kinds of scales. If Joseon’s astronomical instruments is applied by the dual scale drawing on one circumference, we suggest that 3.14 was used as the ratio of the circumference of circle, not 3 like China, when the ring’s size was calculated in that time. From the size of Hundred-interval disk of the extant Simplified Sundial in Korea, we make a conclusion that the three rings’ diameter of the Sun-and-Stars Time-Determining Instrument described in the Sejiong Sillok (世宗實錄, Veritable Records of the King Sejong) refers to that of the middle circle of every ring, not the outer circle. As analyzing the degree of 28 lunar lodges (lunar mansions) in the equator written by Chiljeongsan-naepyeon (七政算內篇, the Inner Volume of Calculation of the Motions of the Seven Celestial Determinants), we also obtain the result that the scale of the Celestial-circumference-degree in the Small Simplified Armillary Sphere was made with a scale error about 0.1 du in root mean square (RMS).
We studied the hour-lines of six extant Yangcheon-cheoks in Korea. To find whether Yangcheon-cheok was used in the whole area of Korea, we calculated the length of shadows of Yangcheon-cheok on the Korean Peninsula, Nanjing and Beijing as well as Hanyang (Seoul), according to 24 solar terms. Comparing the length of shadows with hour-lines of those relics, we could find that Yangcheon-cheok was suitable for use at limited times (from 9:00 to 15:00) during the year. Also, this sundial is more appropriate for use at low latitudes than high ones. Among existing relics, that of Seoul Museum of History made with porcelain was much more suitable to use at Hanyang and its higher latitude. Lee’s collection was also suitable to use at Nanjing. It is certain that Yangcheon-cheok was a portable sundial which could be used from nine to fifteen of clock all the year around except for the winter season.
In this paper, we investigate the observations of Venus in daytime that are recorded in the Goryeosa (History of the Goryeo Dynasty, A.D. 918-1392). There are a total of 167 accounts of such observations in this historical book, spanning a period of 378 yr (from 1014 to 1392). These include six accounts where the days of the observation are not specified and two accounts where the phase angles are outside the calculation range of the equation used in our study. We analyze the number distribution of 164 accounts in 16 yr intervals covering the period from 1023 to 1391. We find that this distribution shows its minimum at around 1232, when the Goryeo dynasty moved the capital to the Ganghwa Island because of the Mongol invasion, and its maximum at around 1390, about the time when the dynasty fell. In addition, we calculate the azimuth, altitude, solar elongation, and apparent magnitude of Venus at sunset for 159 observations, excluding the eight accounts mentioned above, using the DE 406 ephemeris and modern astronomical algorithms. We find that the average elongation and magnitude of Venus on the days of those accounts were ~40° and -4.5, respectively, whereas the minimum magnitude was -3.8. The results of this study are useful for estimating the practical conditions for observing Venus in daylight with the naked eye and they also provide additional insight into the corresponding historical accounts contained in the Goryeosa.