검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 19

        4.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present the first results of the invariant point (IVP) coordinates of the KVN Ulsan and Tamna radio telescopes. To determine the IVP coordinates in the geocentric frame (ITRF2014), a coordinate transformation method from the local frame, in which it is possible to survey using the optical instrument, to the geocentric frame was adopted. The least-square circles are fitted in three dimensions using the Gauss-Newton method to determine the azimuth and elevation axes in the local frame. The IVP in the local frame is defined as the mean value of the intersection points of the azimuth axis and the orthogonal vector between the azimuth and elevation axes. The geocentric coordinates of the IVP are determined by obtaining the seven transformation parameters between the local frame and the east-north-up (ENU) geodetic frame. The axis-offset between the azimuth and elevation axes is also estimated. To validate the results, the variation of coordinates of the GNSS station installed at KVN Ulsan was compared to the movement of the IVP coordinates over 9 months, showing good agreement in both magnitude and direction. This result will provide an important basis for geodetic and astrometric applications.
        4,200원
        12.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The electric coupling between the lithosphere and the ionosphere is examined. The electric field is considered as a timevarying irregular vertical Coulomb field presumably produced on the Earth’s surface before an earthquake within its epicentral zone by some micro-processes in the lithosphere. It is shown that the Fourier component of this electric field with a frequency of 500 Hz and a horizontal scale-size of 100 km produces in the nighttime ionosphere of high and middle latitudes a transverse electric field with a magnitude of ~20 mV/m if the peak value of the amplitude of this Fourier component is just 30 V/m. The time-varying vertical Coulomb field with a frequency of 500 Hz penetrates from the ground into the ionosphere by a factor of ~7×105 more efficient than a time independent vertical electrostatic field of the same scale size. The transverse electric field with amplitude of 20 mV/m will cause perturbations in the nighttime F region electron density through heating the F region plasma resulting in a reduction of the downward plasma flux from the protonosphere and an excitation of acoustic gravity waves.
        13.
        2017.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        As a part of collaborative efforts to understand ionospheric irregularities, the Korea ionospheric scintillation sites (KISS) network has been built based on global positioning system (GPS) receivers with sampling rates higher than 1 Hz. We produce the rate of TEC index (ROTI) to represent GPS TEC fluctuations related to ionospheric irregularities. In the KISS network, two ground-based GPS sites at Kiruna (marker: KIRN; geographic: 67.9° N, 21.4° E; geomagnetic: 65.2° N) and Chuuk (marker: CHUK; geographic: 7.5° N, 151.9° E; geomagnetic: 0.4° N) were selected to evaluate the ROTI value for ionospheric irregularities during the occurrence of the 2015 St. Patrick’s Day storm. The KIRN ROTI values in the aurora region appear to be generally much higher than the CHUK ROTI values in the EIA region. The CHUK ROTI values increased to ~0.5 TECU/min around UT=13:00 (LT=23:00) on March 16 in the quiet geomagnetic condition. On March 17, 2015, CHUK ROTI values more than 1.0 TECU/min were measured between UT=9:00 and 12:00 (LT=19:00 and 22:00) during the first main phase of the St. Patrick’s Day storm. This may be due to ionospheric irregularities by increased pre-reversal enhancement (PRE) after sunset during the geomagnetic storm. Post-midnight, the CHUK ROTI showed two peaks of ~0.5 TECU/min and ~0.3 TECU/min near UT=15:00 (LT=01:00) and UT=18:00 (LT=04:00) at the second main phase. The KIRN site showed significant peaks of ROTI around geomagnetic latitude=63.3° N and MLT=15:40 on the same day. These can be explained by enhanced ionospheric irregularities in the auroral oval at the maximum of AE index
        14.
        2017.03 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        In South Korea, there are about 80 Global Positioning System (GPS) monitoring stations providing total electron content (TEC) every 10 min, which can be accessed through Korea Astronomy and Space Science Institute (KASI) for scientific use. We applied the computerized ionospheric tomography (CIT) algorithm to the TEC dataset from this GPS network for monitoring the regional ionosphere over South Korea. The algorithm utilizes multiplicative algebraic reconstruction technique (MART) with an initial condition of the latest International Reference Ionosphere-2016 model (IRI-2016). In order to reduce the number of unknown variables, the vertical profiles of electron density are expressed with a linear combination of empirical orthonormal functions (EOFs) that were derived from the IRI empirical profiles. Although the number of receiver sites is much smaller than that of Japan, the CIT algorithm yielded reasonable structure of the ionosphere over South Korea. We verified the CIT results with NmF2 from ionosondes in Icheon and Jeju and also with GPS TEC at the center of South Korea. In addition, the total time required for CIT calculation was only about 5 min, enabling the exploration of the vertical ionospheric structure in near real time.
        15.
        2016.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The equatorial region of the Earth’s ionosphere exhibits large temporal variations in electron density that have significant implications on satellite signal transmissions. In this paper, the first observation results of the variations in the trough of the equatorial ionospheric anomaly at the permanent Global Navigation Satellite System (GNSS) site in Chuuk (Geographic: 7.5° N, 151.9° E; Geomagnetic: 0.4° N) are presented. It was found that the daytime Global Positioning System (GPS) total electron content (TEC) values vary according to the 27 day period of solar rotation , and that these trends show sharp contrast with those of summer. The amplitudes of the semi-annual anomaly were 12.4 TECU (33 %) on 19th of March and 8.8 TECU (23 %) on 25th of October respectively, with a yearly averaged value of 38.0 TECU. The equinoctial asymmetry at the March equinox was higher than that at the October equinox rather than the November equinox. Daily mean TEC values were higher in December than in June, which could be interpreted as annual or winter anomalies. The nighttime GPS TEC enhancements during 20:00-24:00 LT also exhibited the semi-annual variation. The pre-midnight TEC enhancement could be explained with the slow loss process of electron density that is largely produced during the daytime of equinox. However, the significant peaks around 22:00-23:00 LT at the spring equinox require other mechanisms other than the slow loss process of the electron density.
        16.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Using the Total Electron Content (TEC) data from the Global Navigation Service System (GNSS) site in Jeju, operated by the Korea Astronomy and Space Science Institute (geographic location: 33.3° N, 126.5° E; geomagnetic location: 23.6° N) for 2002– 2014 in Korea, the results of the statistical analysis of positive and negative ionospheric storms are presented for the first time. In this paper, ionospheric storms are defined as turbulences that exceed 50% of the percentage differential Global Positioning System (GPS) TEC ratio (ΔTEC) with monthly median GPS TEC. During the period of observations, the total number of positive ionospheric storms (ΔTEC > 50%) was 170, which is greater than five times the number of negative ionospheric storms (ΔTEC < - 50%) of 33. The numbers of ionospheric storms recorded during solar cycles 23 and 24 were 134 and 69, respectively. Both positive and negative ionospheric storms showed yearly variation with solar activity during solar cycle 23, but during solar cycle 24, the occurrence of negative ionospheric storms did not show any particular trend with solar activity. This result indicates that the ionosphere is actively perturbed during solar cycle 23, whereas it is relatively quiet during solar cycle 24. The monthly variations of the ionospheric storms were not very clear although there seems to be stronger occurrence during solstice than during equinox. We also investigated the variations of GPS positioning accuracy caused by ionospheric storms during November 7–10, 2004. During this storm period, the GPS positioning accuracies from a single frequency receiver are 3.26 m and 2.97 m on November 8 and 10, respectively, which is much worse than the quiet conditions on November 7 and 9 with the accuracy of 1.54 m and 1.69 m, respectively.