검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 12

        2.
        2020.06 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The Korean Institute of Technology Satellite (KITSAT-1) is the first satellite developed by the Satellite Technology Research Center and the University of Surrey. KITSAT-1 is orbiting the Earth’s orbit as space debris with a 1,320 km altitude after the planned mission. Due to its relatively small size and altitude, tracking the KITSAT-1 was a difficult task. In this research, we analyzed the tracking results of KITSAT-1 for one year using the Midland Space Radar (MSR) in Texas and the Poker Flat Incoherent Scatter Radar (PFISR) in Alaska operated by LeoLabs, Inc. The tracking results were analyzed on a weekly basis for MSR and PFISR. The observation was conducted by using both stations at an average frequency of 10 times per week. The overall corrected range measurements for MSR and PFISR by LeoLabs were under 50 m and 25 m, respectively. The ionospheric delay, the dominant error source, was confirmed with the International Reference of Ionosphere-16 model and Global Navigation Satellite System data. The weekly basis orbit determination results were compared with two-line element data. The comparison results were used to confirm the orbital consistency of the estimated orbits.
        3.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        The Quasi-Zenith Satellite System (QZSS), a dedicated regional Japanese satellite system currently under development, was designed to complement the performance of the Global Positioning System (GPS). The high elevation angle of the QZSS satellite is expected to enhance the effectiveness of GPS in urban environments. Thus, the work described in this paper, aimed to investigate the effect of QZSS on GPS performance, by processing the GPS and QZSS measurements recorded at the Bohyunsan reference station in South Korea. We used these data, to evaluate the satellite visibility, carrier-to-noise density (C/No), performance of single point positioning, and Dilution of Precision (DOP). The QZSS satellite is currently available over South Korea for 19 hours at an elevation angle of more than 10 degrees. The results showed that the impact of the QZSS on users’ vertical positioning is greatest when the satellite is above 80 degrees of elevation. As for Precise Point Positioning (PPP) performance, the combined GPS/QZSS kinematic PPP was found to improve the positioning accuracy compared to the GPS only kinematic PPP.
        4.
        2015.12 KCI 등재 SCOPUS 서비스 종료(열람 제한)
        Using the Total Electron Content (TEC) data from the Global Navigation Service System (GNSS) site in Jeju, operated by the Korea Astronomy and Space Science Institute (geographic location: 33.3° N, 126.5° E; geomagnetic location: 23.6° N) for 2002– 2014 in Korea, the results of the statistical analysis of positive and negative ionospheric storms are presented for the first time. In this paper, ionospheric storms are defined as turbulences that exceed 50% of the percentage differential Global Positioning System (GPS) TEC ratio (ΔTEC) with monthly median GPS TEC. During the period of observations, the total number of positive ionospheric storms (ΔTEC > 50%) was 170, which is greater than five times the number of negative ionospheric storms (ΔTEC < - 50%) of 33. The numbers of ionospheric storms recorded during solar cycles 23 and 24 were 134 and 69, respectively. Both positive and negative ionospheric storms showed yearly variation with solar activity during solar cycle 23, but during solar cycle 24, the occurrence of negative ionospheric storms did not show any particular trend with solar activity. This result indicates that the ionosphere is actively perturbed during solar cycle 23, whereas it is relatively quiet during solar cycle 24. The monthly variations of the ionospheric storms were not very clear although there seems to be stronger occurrence during solstice than during equinox. We also investigated the variations of GPS positioning accuracy caused by ionospheric storms during November 7–10, 2004. During this storm period, the GPS positioning accuracies from a single frequency receiver are 3.26 m and 2.97 m on November 8 and 10, respectively, which is much worse than the quiet conditions on November 7 and 9 with the accuracy of 1.54 m and 1.69 m, respectively.